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Abstract

I show that sluggish variation in firm entry accounts for significant variation in
measured TFP through profit andmarkup channels. I develop amodel of dynamic
firmentry, oligopolistic competition and returns to scale in order to decompose TFP
into technical change, economic profit andmarkup channels. I show that economic
profits cause short-run upward bias in measured TFP, but this subsides to upward
bias from endogenous markups as firm entry adjusts. I analyze dynamics analyt-
ically through a nonparametric DGE model that allows for a perfect competition
equilibrium such that there are no biases in measured TFP. Given market power,
simulations show that measured TFP is 40% higher than technology in the short-
run, due solely to profits, and 20% higher in the long-run due solely to markups.
The speed of firm adjustment (‘business dynamism’) will determine importance of
each bias. JEL: E32, D21, D43, L13, C62, Endogenous markups, Dynamic Firm Entry,
Endogenous Productivity, Endogenous Entry Costs
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Rising markups, increasing economic profits and declining business dynamism are
topical empirical issues inmacroeconomics.1 From a theoretical perspective, firm entry
is core to each mechanism: entry affects competition thus markups; entry arbitrages
profits; and entry rates measure business dynamism. In this paper, I develop a model
of dynamic firm entry, endogenous markups and endogenous entry costs in order
to understand how these emerging trends affect our understanding of measured TFP,
typically acquired as a Solow residual.

I decompose measured TFP into profit, markup and pure technology components.
Crucially, I focus on the dynamic evolution of each component as entry transitions
following apermanent technology improvement, rather thanproviding a static analysis
once entry has adjusted. There are three stages: the short run, when firms are fixed;
transition, when firms are entering; and the long run, when entry has ceased (profits
are zero). I show that both markups and profits cause measured TFP to be an upward
biasedmeasure of pure technology, but their importance differs as entry adjusts. In the
short run, upward bias inmeasured TFP is driven solely by profits, whereas in the long
run upward bias is driven solely by markups. During transition both effects contribute
positively, but the profit bias decreases in importance whilst the markup bias increases
in importance. Numerically I show that measured TFP exceeds underlying technology
by 40% on impact as profits rise and remains 20% higher in the long-run once profits
have been arbitraged but competition has decreased markups. I show that the positive
profit effect dominates the positive markup effect for 5 quarters, but after 10 quarters
the profit effect disappears leaving only the long-run markup effect. These speeds will
vary depending on the speed of entry adjustment, so-called business dynamism, in a
given economy. Business dynamism is determined by prospective entrants’ sensitivity
to endogenously procylical sunk costs.

I extend a continuous-time Ramsey-Cass-Koopmans setup to include endogenous
labor, endogenous markups and dynamic firm entry due to endogenous entry costs.
Additionally the firm-level production function has a U-shaped average cost curve due
to increasing marginal costs and a fixed overhead cost. The fixed overhead cost implies
there are increasing returns to scale in steady-state under imperfect competition, but
with perfect competition there are constant returns at minimum average cost. Im-
perfect competition, due to product differentiation, leads to endogenous markups as
entry expands the number of competing products which weakens price setting ability.
Dynamic entry introduces a new state variable, number of firms, in addition to cap-
ital, and implies markups adjust slowly. Entry occurs to arbitrage profits which are
non-zero whilst entry takes place, but zero in long-run steady-state when entry ceases.

Given a permanent positive aggregate technology shock: profits, entry, employ-
ment, investment, entry costs and productivity are procylical, whereas markups are

1De Loecker and Eeckhout 2017; Eggertsson, Robbins, and Wold 2018; Decker et al. 2018.
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countercyclical. The shock initially affects a fixed number of incumbent firms with a
fixed amount of capital. Consequently the incumbents increase their output which
increases profits as markups are unchanged due to no entry. The change in output
occurs through the direct effect of a better technology and because labor adjusts in-
stantaneously. Scale economies fromoverhead costs increase incumbents’ productivity
inline with the output expansion. However, by raising output and gaining monopoly
profits, prospective entrants evaluate that paying a sunk cost to enter and receive profits
outweighs the opportunity cost of investing at the market rate, hence entry occurs. En-
try reduces the output and profits that incumbents temporarily gained which reduces
productivity as scale declines, but with greater competition, lower markups mean that
incumbents must produce more output in the long run to break-even at zero-profit
steady-state. Hence there is a countervailing long-run scale effect increasing produc-
tivity. Therefore entry has opposing effects on measured productivity. It decreases the
profit bias, but increases the markup bias.

Related Literature Recent progress to understand aggregate productivity through
firm entry focuses on static entry and its selection effects due to heterogeneity in firm
productivity, whereas I focus on the intertemporal effects of homogeneous incumbent
firms bearing shocks and subsequently adjusting to new entrants.2 The interaction
between imperfect competition, increasing returns to scale and technology shocks is
an established explanation for procylical productivity.3 Also, in a static entry setup
the positive effect of endogenous markups on measured TFP is understood (Portier
1995; Jaimovich and Floetotto 2008). The contribution of this paper is to focus on the
dynamic effect of firm entry on productivity, specifically to distinguish the contribu-
tions of profits and markups intertemporally. This focus on productivity differs from
emerging literature on dynamic firm entry based on Bilbiie, Ghironi, andMelitz 2012.4
Additionally, the work generalizes the cost structure of the firm to allow for perfect
competition and presents a nonparametric tractable analysis. To facilitate this, I use an
endogenous sunk cost setup, based onDatta andDixon 2002, which generates dynamic
entry and allows for a tractable analysis in continuous time. Savagar and Dixon 2017
study a similar dynamic firm entry model with fixed markups and interpret short-run

2Static entry literature, such asDa-Rocha, Tavares, andRestuccia 2017; Baqaee and Farhi 2017, focuses
on producer heterogeneity, allocation and selection effects, thus between-firmproductivity is the interest
whereas, in this paper, with dynamic entry the interest is within-firm productivity over the cycle as
firms adjust their production in response to entry.

3Hall 1990; Caballero and Lyons 1992; Hornstein 1993; Devereux, Head, and Lapham 1996a; Basu
and Fernald 2001; Kim 2004.

4Etro and Colciago 2010; Lewis and Poilly 2012 investigate model performance under different forms
of strategic interaction and endogenous markup. Jaimovich and Floetotto 2008 focus on static entry in
their main paper, but simulate for dynamic entry in the appendix. The dynamic entry results cause
weaker measured TFP amplification than in the static case. My tractable analytic analysis helps to
explain these simulated results, and provides new explanations for the changing role of profits and
markups intertemporally.
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procylical productivity movements through excess capacity utilization.

1 Cost Curves Intuition
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P( ỹ(A0))
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Figure 1: Cost Curve Explanation

Figure 1 shows the cost curves and equilibria of a firm with increasing marginal
costs (MC) and a U-shaped long-run average cost (LRAC) due to a fixed overhead cost.
Demand (D) and marginal revenue (MR) curves are downard sloping due to product
differentiation. The two diagrams represent the dynamic effect on an incumbent
firm’s costs and demand and in turn productivity resulting from an improvement in
technology A0 < A1 when entry is slow and affects price setting ability. The ‘true’
measure of technological productivity growth that we hope to capture is the shift in
the average cost curve, most easily captured at the perfectly competitive minimum
average cost level.
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Initially the economy is at steady state ỹ(A0), p( ỹ(A0)) where MR(A0) � MC(A0).5
At time t � 0 a permanent technology improvement shifts both marginal and aver-
age cost curves downwards instantaneously. With slow firm adjustment, entry does
not take place immediately, firms are quasi-fixed, so that incumbents face demand
(price) D(A0) and MR(A0) but lower costs LRAC(A1), such that producing where
MR(A0) � MC(A1) leads to economic profit indicated by the shaded rectangle. At
this profit maximizing level the firm produces y0(A1) which shows it expands its scale
on impact. This is because it can change labor freely to achieve optimum.6 The in-
crease in scale implies a movement down the LRAC curve which corresponds to a
productivity improvement on top of the parallel shift from technology. This is the
productivity increase associated with economic profits. Subsequently (lower graph)
entry takes place, arbitraging profit until demand shifts to tangency between D(A1)
and LRAC(A1). The new steady-state following full entry adjustment corresponds to
ỹ(A1). It shows that following the initial increase in firm scale and corresponding
endogenous rise in productivity, there is a decline in scale reducing productivity but
not back to the initial level. There is a long-run increase in scale and thus productiv-
ity because entry has a second effect: it increases competition among firms making
their demand curves more elastic. As the demand curve becomes flatter so tangency
is achieved at a point corresponding to an increase in output. This is because with
weaker demand (price) firms must produce more units to break even in the long-run
zero-profit steady state. Therefore entry has two opposing effects on productivity.
The shifting in of the demand curve from business stealing (profit arbitrage) reduces
incumbent scale and thus productivity, whereas the greater competitionwhich flattens
the demand curve increases scale and thus productivity, and this persists into the long
run. If entry did not endogenously affect price setting ability (Dixit and Stiglitz 1977),
so constant markups with dynamic entry, then the demand and revenue curves would
shift inwards in parallel (no flattening) such that MR(A1) � MC(A1) at the original
firm scale ỹ(A0) implying no long-run scale and thus no long-run productivity effect,
despite the short-run profit effect.7

Fixedmarkupsand instantaneousentry: Importantly imperfect competition (markup
greater than 1) is not sufficient to impart biases on our measure of technological im-

5This is the steady state outcome under imperfect competition due to downward sloping demand
curves from product differentiation. The level of output is less than the firm’s minimum efficient scale
(MES) ỹ(A0) < yMES where average cost and marginal cost intersect and long run average costs are
minimized – the difference is excess capacity. The MES would arise under perfect competition where
demand curves are horizontal due to no product differentiation.

6See supplementary appendix figure for a full diagram with short-run average cost curves which
demonstrates that incumbents move along the SRAC by varying labor instantaneously, whereas in the
long-run they move along the LRAC envelope because capital can also be adjusted.

7Savagar and Dixon 2017 focus on this so-called excess capacity utilization effect in the absence of
endogenous markups, and relate it to microproduction theory (Morrison 2012) and capital-utilization
literature.
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provement. Beginning at p( ỹ(A0)) if the demand curve shifts in immediately (due
to zero-profit i.e.instantaneous entry) and it maintains its slope (due to fixed markup
i.e. constant price elasticity of demand) we immediately attain tangency at p(y0(A1)),
whichperfectly captures the change in technology as the change p( ỹ(A0)) → p(y0(A1))
exactly corresponds to the downward shift in the AC curve.8 The problem in our
case is that what we measure captures this distance, plus some extra represented by
p(y0(A1)) → C(y0(A1)), and corresponding to profit. This is the concept of quasi-
fixity (Morrison 1992): the cost of an extra unit of output C(y0(A1)) diverges from
the marginal (revenue) product p(y0(A1)), unlike in the case discussed earlier in this
paragraph where they are instantaneously the same. To overcome this it is better to
find an alternative measure of cost (not factor price) that accurately representsMRP i.e.
we immediately want p(y0(A1)) rather than the C(y0(A1)) we observe. Morrison 1992
uses shadow prices. In steady-state the AC/MC ratio is also the P/MC ratio, hence
returns to scale equal markups under zero-profits.

The remainder of the paper formalizes this intuition in a DGEmodel taking special
care to disentangle the two opposing effects from entry.

2 Model

2.1 Household

The representative household chooses future consumption {C(t)}∞0 ∈ < and labor
supply {L(t)}∞0 ∈ [0, 1] to maximise lifetime utility U : <2 →<. Instantaneous utility
u : <× [0, 1] → < is jointly concave and differentiable in both of its arguments. It is
strictly increasing in in consumption uC > 0, strictly decreasing in labor uL < 0 and
separable uCL � 0. The household owns capital and takes equilibrium rental rate, wage
rate and firm profits K, r, w ,Π ∈ <+ as given. Capital investment I ∈ < equals the
flow of capital as there is no depreciation. The household solves

max
K,C,L

U : �
∞∫

0

u(C(t), 1 − L(t))e−ρt dt (1)

s.t. C(t) + I(t) � rK(t) + wL(t) +Π(t) (2)

I(t) � K̇ (3)

8Just as in the trivial perfect competition case at minimum AC
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Optimal paths satisfy the intertemporal consumption Euler equation (4), intratemporal
labor-consumption trade-off (5) and resource constraint (2).9

Ċ(t) � − uC

uCC
(r(t) − ρ), (4)

w(t) � − uL (L(t))
uC (C(t))

(5)

To complete the solution for the boundary value problem, we impose a transversality
condition on the upper boundary and an initial condition on the lower boundary.

lim
t→∞K(t)λ(t)e−ρt

� 0, (6)

K(0) � K0 (7)

λ(t) � uC is the co-state variablewhich represents themarginal utility of consumption.

2.2 Firm

There is a nested CES aggregator composing aggregate output Y from a continuum of
industries  ∈ [0, 1] producing Q  containing a finite number of N firms producing y ı.
At the aggregate level and industry level there is perfect competition (prices P and P 
are given). But at the firm level there is oligopolistic (Cournot) competition. The firm
can affect own-price P ı through a direct effect (standard monopolistic competition)
and through its effect on the industry level output. The result is endogenous demand
elasticity that becomes more elastic with more firms, hence a markup that decreases
in entry. The aggregate output production function and industry output production
function are given by

Y �

[∫ 1

0
Q

θI−1
θI
 d 

] θI
θI−1

, θI ≥ 1 (8)

Q  � N1+ϑ


1
N

N∑

ı�1
y
θF−1
θF
ı



θF
θF−1

, θF > θI ≥ 1 (9)

where ϑ ∈ [0,∞) is a variety effect; θF ∈ (1,∞) is between-firm substitutability;
θI ∈ [1,∞) is between-industry substitutability. Solving the aggregate and firm-level
maximization problems yields aggregate and industry inverse demands that combine

9See appendix for the Hamiltonian problem and six associated Pontryagin conditions.
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to give firm-level inverse demand:

P ı �
(

y ı
Q 

)− 1
θF

(
Q 

Y

)− 1
θI

N−
1
θF

+ϑ
θF−1
θF P (10)

Firms are symmetric in their production technology, firm ı in industry  produces
output:

y ı (t) :� max{AF(k ı (t), ` ı (t)) − φ, 0} (11)

where F : <2
+ ⊇ (k , `) → <+ is homogeneous of degree ν ∈ (0, 1) (hod-ν). φ ∈ <+ is

an overhead cost denominated in output.10 Inada’s conditions hold so that marginal
products of capital and labor are strictly positive which rules out corner solutions
Fk , F` > 0, and theHessian of F satisfies concavity properties Fk` � F`k > 0, Fkk , F`` < 0
and FkkF`` − F2

k` > 0.11 A ∈ [1,∞) is a scale parameter reflecting the production
technology. The individual firm solves

max
y ,ı

π ı � P ı y ı − w` ı − rk ı (12)

subject to inverse demand (10) which will lead to an endogenous markup.

2.2.1 Factor Market Equilibrium

An optimizing firm’s conditional demand for hours worked and capital are given by
the following factor market equilibrium

AFk (k , `)
µ(N)

�
r

P ı
(13)

AF` (k , `)
µ(N)

�
w
P ı

(14)

The marginal revenue product of capital (MRPK) AFk
µ(N) equates to the real price of

capital and the MRPL AF`
µ(N) equates to the real price of labor. As markups increase

10As in Hornstein 1993; Devereux, Head, and Lapham 1996a; Rotemberg and Woodford 1996; Cook
2001; Kim 2004; Jaimovich 2007 the fixed overhead parameter implies profits will be zero in steady-state
despite market power. The overhead cost means that marginal costs do not measure returns to scale.
We focus on the case where marginal costs are increasing, but average costs are decreasing, so there are
(locally) increasing returns to scale.

11Homogeneity of degree ν and cross-derivative symmetry implies

νF(k , l) � Fk k + Fl l
(ν − 1)Fl � Fll l + Flk k � Fll l + Fkl k
(ν − 1)Fk � Fkl l + Fkk k � Flk l + Fkk k
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the marginal revenue from an additional unit of production is less. The presence of
the endogenous markup (µ depending on N), causes the MRPs to be nonmonotone
functions of N . This can cause multiple equilibria: different numbers of firm cause the
factor market relationship to hold.12 I provide uniqueness conditions later.

A firm’s maximized profit gives a relationship between firm-level real operating
profit, output and markup13

π ı

P ı
� y ı − 1

µ ı
ν(y ı + φ) �

(
1 − ν

µ ı

)
y ı − ν

µ ı
φ �

(
1 − ν

µ ı

)
(y ı + φ) − φ (16)

Dividing by y ı gives a relationship between the profit share and fixed cost share
µ ı (1 − sπ) � ν(1 + sφ).

2.2.2 Returns to Scale (RTS)

Returns to scale are defined as the inverse elasticity costs to output which is the ratio
of average cost to marginal cost14

RTS ≡ AC
MC




∈ (1,∞), increasing returns

� 1, constant returns

∈ (0, 1), decreasing returns

(17)

The production function exhibits two alternative representations of returns to scale
defined as AC

MC . They arise from the cost function and profit definition respectively, the
former depends on market structure, whereas the latter relates to technical parameters
of the production function15

RTS � ν
(
1 + sφ

)
� µ (1 − sπ) R 1 (18)

where sφ ≡ φ
y and sπ ≡ π

P ı y are the fixed cost share in output and profit share in
revenue. The ‘cost-based measure’, RTS � ν(1 + sφ), highlights that entry affects RTS
through output only, by affecting the fixed cost share, as the other variables are fixed
parameters, whereas the ‘profit-based measure’, RTS � µ(1− sπ), shows markups, profit

12Linnemann 2001 investigate this in a model with instantaneous entry, endogenous markups and no
capital.

13From the profit function (91) and cost function (76) a firm’s maximized profits are

π ı � P ı y ı − C(r, w , y ı) � P ı y ı −MC ı ν(y ı + φ) (15)

This also implies that RTS ≡ AC
MC � µ(1 − sπ) where sπ ≡ π

P y is the revenue share of profits.
14This follows from the definition of scale elasticity εCy ≡ Cy

y
C � MC /AC and for homothetic

production functions scale elasticity of the cost function equals returns to scale of the prodution function
(Silberberg 1990, Ch. 8 Syverson 2019)

15See Appendix for derivation.
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and output determine RTS.
It is useful to contrast my work in relation to RTS with related papers. In Bilbiie,

Ghironi, and Melitz 2012 there are no overhead costs φ � 0 and marginal costs are
constant ν � 1 implying RTS � 1 from the cost-based measure. To demonstrate
RTS from the profit-based measure consider their equilibrium profit condition is π �(
1 − 1

µ

)
y, analogous to (39), except with constant returns to scale (RTS � 1) the implied

profit share is in a one-one mapping with markups and, in fact, equal to the Lerner
index measure of market power sπ �

(
1 − 1

µ

)
� LI � 1

ε ∈ (0, 1). Hence the profit-based
RTS measure in (18) is also 1. However in BGM the profit share is always positive if
µ > 1, this is due to the absence of a fixed overhead cost which in our model wipes
out any excess profit, and the absence of sunk costs in the long run as there is no
congestion. In their work the one-off, wage-denominated entry cost is fixed so fulfills
the role of eliminating profits. In the long-run it equates to profits, so net of the
entry cost profits are zero. Therefore the presence of constant returns, will remove
any of the endogenous productivity effects I focus on in this paper, even though their
dynamic entry setup creates the same short-run intensive margin (variation in output
per firm) adjustment and long-run intensive-extensive margin (variation in output per
firm and aggregate output) adjustment. In Jaimovich and Floetotto 2008 φ > 0, ν � 1,
implying flat marginal cost and globally downward sloping average cost, so there are
globally increasing returns and equilibrium only exists with imperfect competition
µ > 1 – there is no Walrasian benchmark at minimum efficient scale. In their work the
equilibrium profit condition is π �

(
1 − 1

µ

)
y − 1

µφ such that sπ �

(
1 − 1

µ

)
− 1

µ sφ and
entry is instantaneous such that the profit-share is always zero and returns to scale
always equal the endogenous markup, which always reflect the fixed cost share in
output.

2.2.3 Symmetric Equilibrium Profits, Prices, Aggregates

We already derived the symmetric equilibrium elasticity and markup (34). In deriving
the markup, symmetry provided the crucial step to link price setting ability to number
of competitors. That is, it determined that own output effect on industry output is
declining in number of competitors ∂Q 

∂y ı
�

Q 

y ı
1
N .16 Under symmetry, intermediate

variables are equivalent

∀( , ı) ∈ [0, 1] × [1,N (t)] : y ı � y , k ı � k , ` ı � `,N  � N

Perfect factor markets imply aggregate capital and hours are divided evenly among
firms, such that the number of firms behaves as a quasi-input determining output

16For Betrand own price on industry price is declining in number of competitors ∂P 
∂P ı

�
P 
P ı

1
N .
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through how resources are divided.

k �
K
N

(19)

` �
L
N

(20)

F(k , `) � F
( K

N
,

L
N

)
� N−νF(K, L) (21)

Fk (k , `) � FK

( K
N
,

L
N

)
� N1−νFK (K, L) (22)

F` (k , `) � F`
( K

N
,

L
N

)
� N1−νFL (K, L) (23)

y � AN−νF(K, L) − φ (24)

Integrating a symmetric quantity over the [0, 1] interval implies industries are repre-
sentative of aggregate Y � Q  and P � P  ∀. The aggregation of firm level to industry
level will depend on any variety effect (ϑ)

Q  � N1+ϑ


1
N

N∑

ı�1
y
θF−1
θF
ı



θF
θF−1

�⇒ Q  � N1+ϑy (� Y) (25)

P  � N
1

θF−1−ϑ *
,

N∑

1
P1−θF
ı

+
-

1
1−θF

�⇒ P  � N−ϑP ı (� P) (26)

Given a variety effect ϑ > 0, in symmetric equilibrium the relative price depends on
the number of firms (which each produce a variety)

%(N) �
P ı
P

� Nϑ (27)

In Atkeson and Burstein 2008, Bilbiie, Ghironi, and Melitz 2012, Table 1, p.312 and
Etro and Colciago 2010, Eq. C.1, p1230 the variety effect is ϑ �

1
θF−1 , but is ignored

for data-consistent variable interpretations.17 Here we follow Jaimovich and Floetotto
2008, and assume no variety effect ϑ � 0, thus normalizing final good price to 1 we
have

P � P  � P ı � 1 (28)

Y � N y (29)

� N1−νAF(K, L) − Nφ (30)

17In both Etro and Colciago 2010; Bilbiie, Ghironi, and Melitz 2012, the implication of variety effects
is to carefully interpret different methods to deflate variables: either data-consistent (divide by P ı)
or welfare-consistent (divide by P). Empirically relevant variables net out the effect of changes in the
number of firms (varieties/products), whereas welfare-consistent variables always assume variations in
the number of varieties are left in the deflator.
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Under symmetry inverse price elasticity of demand (95) under Cournot becomes18

ε−1
�

1
θF

+

[ 1
θI
− 1
θF

] 1
N

(33)

which is also the Lerner index (LI ∈ (0, 1)) ofmarket power LI � P−MC
P � 1− 1

P/MC � ε−1.
Therefore the symmetric Cournot markup, with N ≥ 1, is

µ(N) �
1

1 − ε−1 �
1

1 − 1
θF
− 1

N

(
1
θI
− 1
θF

) , θF > θI ≥ 1 (34)

Markups decrease as number of competitors increase because they dilute incumbents’
market share, making price elasticity of demandmore elastic. The markup is bounded
above by the single firm industry case (monopolistic competition) limN→1 �

θI
θI−1 and

bounded below by limN→∞ �
θF
θF−1 , which is the perfect competition case if goods are

homogeneous at the firm level lim N→∞
θF→∞

µ(N) � 1. The elasticity of the markup with

respect to number of firms εµ ≡ ∂µ
∂N

N
µ measures the responsiveness of markups to entry

εC
µN � 1 −

θF−1
θF

θF−1
θF
− 1

N

(
1
θI
− 1
θF

) � 1 −
(
θF − 1
θF

)
µ < 0 (35)

The case that gives the most responsive markups is when N → 1, θI � 1: a small
number of firms competing in a unique industry. The corresponding markup is
µ �

θF N
(θF−1)(N−1) and its elasticity is εµN |θI�1 � − 1

N−1 .19 Appendix B.7 illustrates these
markup properties graphically and for the Bertrand case.

18 Taking the derivative of (9) gives

∂Q ı

∂y ı
�

Q (∑N
ı�1 y

θF−1
θF
ı

) y
− 1
θF

ı �⇒ ∂Q ı

∂y ı

y ı
Q ı

�
y
θF−1
θF
ı(∑N

ı�1 y
θF−1
θF
ı

) (31)

and under symmetry
(∑N

ı�1 y
θF−1
θF
ı

)
� N y

θF−1
θF
ı so

∂Q 

∂y ı
�

Q 

y ı
1
N

�⇒ y ı
Q 

∂Q 

∂y ı
�

1
N

(32)

19Between firm substitutability θF > θI � 1 can be specified arbitrarily, it does not affect the elasticity.
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2.2.4 Symmetric Equilibrium profit-output-markup Relationship

With normalized pricing and symmetry, factor market equilibrium becomes

r �
AFk (k , `)
µ(N)

�
AN1−νFK (K, L)

µ(N)
(36)

w �
AF` (k , `)
µ(N)

�
AN1−νFL (K, L)

µ(N)
(37)

Through these factor prices and Euler’s homogeneous function theorem, variable costs
can be expressed as a function of output per firm and markups

rk + w` �
ν

µ(N)
(y + φ) (38)

Consequently, from π � y − rk − w`, optimized profits and output per firm are20

π(y , µ(N)) �
(
1 − ν

µ(N)

)
(y + φ) − φ (39)

y(π, µ(N)) �
(
1 − ν

µ(N)

)−1
(π + φ) − φ (40)

This implies a correspondence between output per firm, profits and markups.

2.2.5 Aggregation and TFP

The aggregate reduced-form production function is21

Y �

(
A

π + φ

) 1
ν
(
1 − ν

µ

) 1
ν−1 (

π +
ν
µ
φ

)
F(K, L)

1
ν (41)

TFP relates aggregate output to inputs and is therefore defined as22

TFP ≡ Y

F(K, L)
1
ν

�
y

F(k , `)
1
ν

(42)

TFP(t) ≡
(

A
π(t) + φ

) 1
ν
(
1 − ν

µ(t)

) 1
ν−1 (

ν
µ(t)

φ + π(t)
)

(43)

20Operating profit, often called dividends, is the profit of an incumbent firm in a given period which
excludes the one-time sunk entry cost. The sunk entry cost is included in aggregate profits.

21See Appendix F for full derivation. The result uses y(π, µ), Y(N, y), and Y(N, K, L) to get
Y(π, µ, K, L). First substitute out N �

Y
y from (29), then collect terms in Y, lastly replace y(π, µ(N))

using (40).
22See Kim 2004; Barseghyan and DiCecio 2011 for similar derivations of reduced-form aggregate

output with non-constant marginal costs and overhead costs. The normalization of the denominator to
be homogeneous of degree 1 with scale economies is common (see Da-Rocha, Tavares, and Restuccia
2017, p.22 who also have an output denominated fixed cost).
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TFP varies endogenously with profits and markups. These two endogenous compo-
nents relate to the two key mechanisms in our model. Profits are endogenous due
to dynamic entry and markups are endogenous due to competition effects. A useful
representation of our measured TFP definition is

TFP(t) � A
1
ν

y(t)

(y(t) + φ)
1
ν

(44)

This shows given fixed parameters φ, ν, variations in measured TFP can arise through
two variables: exogenous technology A and output per firm y. The elasticity of TFP
with respect to firm output depends on returns to scale23

εTFP y � 1 − 1
RTS (46)

Through (40) output per firmdepends onprofits andmarkupswhich in turn dependon
A. Therefore through (44), exogenous shocks to A will have a direct effect onmeasured
TFP but also an effect due to y which by (46) affects measured TFP due to RTS.

2.2.6 Firm Entry

An endogenous sunk entry cost and an entry arbitrage condition determine the level
of entry and consequently the number of firms operating at time t. The sunk entry cost
exhibits a congestion effect, and it is this dynamic sunk cost that prevents instantaneous
adjustment of firms to steady state.24 A prospective entrant’s post-entry value is equal
to the present discounted value of future operating profits (dividends), which is also
the value of an incumbent firm. Under free-entry this equates to the entry cost q ∈ <

V (t) �
∫ ∞

s�t
π(t)e−r(s−t)dt (47)

V (t) � q(t) (48)

23Output per firm y has an effect on measured TFP providing there are not constant returns to scale
(RTS � 1):

∂TFP
∂y

�
TFP

y
*.
,
1 − 1

ν
(
1 +

φ
y

) +/
-
�

TFP
y

(
1 − 1

RTS

)
(45)

24The entry adjustment costs theory is analogous to capital adjustment cost models which recognize
that investment in capital is more costly for larger investment.
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We assume that the entry cost increases in the rate of entry Ṅ , and its sensitivity to
entry depends on the exogenous congestion parameter ζ25

q(t) � ζṄ , ζ ∈ (0,∞) (49)

The congestion effect assumption is a particular form of endogenous sunk cost that
captures that resources needed to setup a firm are in inelastic supply, and therefore
a greater rate of entry increases the entry cost. For example if firms need to register
documents with a Government office before operating, then as more firms enter, the
queue increases and the cost increases.26 Lewis 2009 provides empirical evidence on
the importance of entry congestion in replicating empirical dynamics to aggregate
shocks.

By taking the derivative, the value function can be represented as the well-known
arbitrage condition rV � π + V̇ that equates an assets opportunity cost to its divi-
dends and change in underlying value. Therefore when combined with the free entry
condition and sunk cost assumption

r(t)q(t) � q̇(t) + π(t) (50)

The return to paying a sunk costs q to enter and receiving profits equals the return
from investing the cost of entry at the market rate r(t). Since the endogenous sunk cost
is itself dynamic, the arbitrage condition is a second-order ODE in number of firms. If
we define net entry, this second-order ODE is separable into two first-order ODEs.

Ṅ (t) ≡ E(t) (51)

Ė(t) � −π(t)
ζ

+ r(t)E(t), ζ ∈ (0,∞) (52)

The second-order differential equation requires two boundary conditions for a unique
solution

N (0) � N0 (53)

lim
t→∞ e−ρt uCN (t)q(t) � 0 (54)

The rate of entry increases Ė > 0 if the outside option r(t)E(t) exceeds the profit
from entering π(t)

ζ . This is because households invest in the more attractive outside
option, as opposed to setting up firms, hence the entry cost falls because there is less

25Its bounds are the two well-known cases: less sensitivity to congestion limζ→0 q(t) implies instan-
taneous free entry, and more congestion sensitivity limζ→∞ q(t) implies fixed number of firms.

26See Aloi, Dixon, and Savagar 2018 for empirical evidence, from OECD Doing Business data, that
links number of procedures to start-up with length of time to create a firm.

14



congestion. The result is an increase in the amount of entry.
The aggregate cost of entry (total investment in firms) Z(t) ∈ < is

Z(t) � ζ
∫ E(t)

0
i di � ζ

E(t)2

2 (55)

In general equilibrium sunk entry costs are accounted for in the aggregate profits of
the household’s income constraint. Aggregate profits are each firm’s operating profits
less the aggregate sunk cost of entry.

Π(t) � N (t)π(t) − Z(t) (56)

Plugging aggregate profits into the income identity of the household leads to the
aggregate resource constraint that output is split between consumption, investment in
capital and investment in firms 27

Y � C + I + Z (61)

2.3 Competitive Equilibrium

Definition 1 (Competitive Equilibrium). Competitive equilibrium is the equilibrium
paths of aggregate quantities and prices {C(t), L(t), K(t),N (t), E(t), w(t), r(t)}∞t�0,
with prices strictly positive, such that {C(t), L(t)}∞t�0 solve the household problem.
{K(t)}∞t�0 satisfies the law of motion for capital. Labor and capital {L(t), K(t)}∞t�0 max-
imise firm profits given factor prices. The flow of entry causes the arbitrage condition
on entry to hold (price of entry equals net present value of incumbency). State variables
{K(t),N (t)}∞t�0 satisfy transversality. Factor prices are set according to factor market
equilibrium (14) and ensure goods and factor markets clear.

27This follows from the income identity. A representative household’s income is earned fromwages w
on labor L, rental r of capital K and total profitsΠ, which equal aggregate dividends (operating profits)
N (t)π(t) less entry costs Z(E(t)).

Π(t) � N (t)π(t) − Z(E(t)) � Y(t) − w(t)L(t) − r(t)K(t) − Z(E(t)) (57)

This income can be spent on consumption and investment in capital

I(t) + C(t) � w(t)L(t) + r(t)K(t) +Π(t) (58)
K̇(t) + C(t) � Y(t) − Z(E(t)) (59)

K̇ � Y(t) − ζE(t)2

2 − C(t) (60)
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2.4 Dynamics and Steady-State

With labor defined implicitly L(C, K,N) by the intratemporal condition, and substitut-
ing in factor prices, profits and output, the dynamic equations fromTable 3 are a system
of four ODEs in consumption, entry, capital and number of firms (C, E, K,N). In the
appendix, I show that the system is characterized by saddle path dynamics such that
K,N are fixed state variables on impact of a shock, whereas C, E jump instantaneously
to the saddle path.

2.4.1 Steady-State Solutions

A steady-state equilibrium occurs when the dynamic equations are stationary. There-
fore consumption, entry, capital and number of firms are constant over time. The
steady-state X̃ � (C̃, Ẽ, K̃ , Ñ) satisfies the following conditions jointly leading to steady-
state levels in terms of fixed parameters {A, ν, φ, ρ, θF , θI }28

Ċ � 0 ⇐⇒ r̃(C̃, K̃ , Ñ) � ρ (62)

Ė � 0 ⇐⇒ π̃(C̃, K̃ , Ñ) � 0 (63)

K̇ � 0 ⇐⇒ Ỹ(C̃, K̃ , Ñ) � C̃ (64)

Ṅ � 0 ⇐⇒ Ẽ � 0 (65)

Hence in steady state the interest rate equals the discount factor; profits are zero; and
aggregate output equals consumption. The conditions are nonlinear, and steady-state
may not be well-defined. Later, I provide conditions for existence. The steady-state
conditions imply output per firm, and thusmeasuredTFPare endogenouslydependent
on the number of firms in steady-state.

Proposition 1 (Endogenous Steady State Output and Productivity). Steady state output
per firm ỹ and measured productivity ˜TFP are endogenously increasing in the number of firms.

ỹ(µ(Ñ)) �
νφ

µ(Ñ) − ν (66)

˜TFP(µ(Ñ)) � ν


A
µ(Ñ)

(
µ(Ñ) − ν

φ

)1−ν

1
ν

(67)

We can understand why output is increasing in entry by considering the profit
representation (39). In steady-state profit is zero (63), therefore since φ is fixed, pro-
duction F(k , l) must increase to cover this overhead and break-even at zero-profit as
entry decreases the markup. Equivalently, the fixed cost share in output decreases as

28The congestion parameter ζ does not affect steady state because it pre-multiplies a differential.
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the markup falls with entry

s̃φ �
µ̃

ν
− 1 (68)

The TFP result (67) follows because there are increasing returns in steady-state with
imperfect competition, this is clear from (18) under zero-profits, in fact the returns to
scale in steady-state equate to the long-run markup

˜RTS � ν(1 + s̃φ) � µ̃ ≥ 1 (69)

therefore an increase in output translates to an increase in TFP.29 In the special case
of perfect competition, when there are many firms µN→∞ � 1, and demand curves
are flat, the steady-state output (66) is equivalent to a firm’s minimum efficient scale
(MES) (83), implying TFP is maximized, and firms are operating at the minimum of
their average cost curve, where AC � MC implying constant returns RTS � 1. This
result would not exist with flat marginal cost curves ν � 1, where a steady-state would
not be well-defined.

3 Measured TFP Dynamics

From our definition of measured TFP (44) take the logarithmic derivative

ˆTFP(t) ≈ 1
ν

Â(t) +
(
1 − 1

˜RTS

)
ŷ(t) (70)

Hat notation represents deviation from steady-state: x̂ �
ẋ
x̃ . In steady-state themarkup

is equivalent to returns to scale µ̃ � ˜RTS ≥ 1. Therefore the coefficient on firm-level
output variations is the price-cost margin i.e. Lerner index:

(
1 − 1

µ̃

)
� 1 − 1

P /MC �

P−MC
P ∈ (0, 1). The result shows that variations in measured TFP are composed

of variations in pure technology Â, but also variations in output per firm ŷ (firm
intensive margin) interacted with returns to scale. Since ˜RTS � µ̃ > 1 with imperfect
competition, measured TFP fluctuations overestimate pure technology fluctuations
because it also captures variations in returns to scale. There is no bias if there are
(locally) constant returns to scale ˜RTS � 1 which would occur with perfect competition
µ̃ � 1 at minimum efficient scale. Additionally, if firm size is not varying ŷ � 0, as in
status-quo models with fixed markups and instantaneous entry, then there is no bias:

29The rate at which TFP increases in N is

∂ ˜TFP
∂N

� −Aν
µ2

(µ − 1)
(µ − ν)νφ1−ν ·

∂µ(Ñ)
∂N

> 0
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measured productivity accurately reflects underlying technology, even though there is
imperfect competition in the form of monopolistic competition.

Our focus is to understand how the endogenous variations in firms’ intensive mar-
gin and therefore measured productivity can be decomposed into profit and markup
components. From (40) output per firm is a function of profits and markups, which in
turn implies measured TFP is a function of technology A, markups µ and profits π as
in (43). Log-linearizing the output per firm expression (40) gives

ŷ � µ̃

(
1
νφ

π̂ − 1
µ̃ − ν µ̂

)

and substituting this into (70) gives30

ˆTFP(t) ≈ Â
1
ν
− µ̂(t)

(
µ̃ − 1
µ̃ − ν

)
+ π̂(t)

(
µ̃ − 1
νφ

)
(71)

A is always positively related to TFP but, in a neighborhood of steady state, µ is
negatively related and π positively related, providing there is not perfect competition
µ̃ � 1 and therefore constant returns as discussed above.31 Profits increase measured
TFPwhereasmarkups decreasemeasured TFP, but over the cycle profits are procyclical
and markups are countercyclical hence both cause upward bias. Therefore a deviation
in technology Â is not accurately measured by a deviation in ˆTFP which is what we
typically measure from the data using a Solow Residual type approach, either in the
crudest Solow Residual sense from acquiring the residuals of a logged regression
of (42) (in our model the relevant SR would account for ν), or using the ‘modified
Solow Residual’ of Basu and Fernald 1997. The result shows that the measured TFP
series we acquire is composed of variations in technology, but also upward biased by
variations inmarkups and profits. Consequently a pure technology serieswould purge
a measured TFP series of these two extra endogenous components. Our main interest
is the dynamic implications of firm entry, that is how important are these two biases
at various stages following a technology shock.

Proposition 2. Following a technology shock, all short-run endogenous variation in measured
TFP arises from economic profits. The markup effect is zero.

Consider that the economy begins at steady state and there is a positive shock to
technology Ã < A(0) at time 0, hence [A(0) − Ã] 1

Ãν
immediately increases TFP(0).

Under instantaneous entry the markup would immediately decrease µ(0) < µ̃ in
response to the immediate entry of new firms to bring about zero profits. The double-

30This result can be verified through direct linearization of (43).
31Away from steady state, the effects are ambiguous depending on the size of increasing marginal

costs, as shown in the supplementary appendix.
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negative means this will have an additional positive effect −[µ(0) − µ̃]
(

µ̃−1
µ̃(µ̃−ν)

)
> 0

on TFP(0). The conclusion being that with static entry (instantaneous zero profits)
measured TFP is an upward biased estimator or technology.32 Under dynamic entry
at t � 0 the markup does not move because the number of firms is a state variable
which takes an instance to adjust [µ(0) − µ̃] � 0.33 Therefore µ(N0) − µ(Ñ) � 0 so
there is no instantaneous markup effect on productivity. However, profits will have
an effect. At t � 0 profits increase π(0) > π̃ so in addition to the technology effect we
observe [π(0) − π̃]

(
µ̃−1
νφ

)
> 0. Hence our theory, which shows that markups do not

move instantaneously, allows us to disentangle the profit effect from the markup effect
due to timing.

Proposition 3. Following a technology shock, all long-run endogenous variation in measured
TFP arises from endogenous markups. The profit effect is zero.

In the instantaneous entry case, the instantaneous technology and markup effect
persist into the long run. Hence there is no distinction. In the dynamic entry case,
as t → ∞ markups decrease to their long-run level as number of firms increases so
there is a permanent effect equivalent to the instantaneous effect in the static entry
case −[µ(∞) − µ̃]

(
µ̃−1

µ̃(µ̃−ν)

)
> 0 on TFP(∞). The profit effect, observed on impact in the

static entry case, disappears as profits return to their initial position so π(∞) − π̃ � 0.
Transition: At t � 0 the only effect is from profits. At t → ∞ the only effect is

from markups. In transition there are two positive effects on TFP, but the importance
of profits decreases and of markups increases. Each period µ(t) moves further away
from its initial position µ̃ so its importance grows. Whereas π(t) moves closer to its
original position π̃ � 0, so its importance shrinks. Therefore both profits and markups
are intertemporally having a measured productivity increasing effect TFP(t), on top
of the exogenous shock, but the positive effects change in relative importance over
time. It is firm entry that drives this change. Firm entry increases the importance
of the positive markup effect, and decreases the importance of the positive profit
effect.34 Themarkup effect continuously grows in importance, whereas the profit effect
continuously shrinks. Figure 2 demonstrates the composition of these effects: the
top blue line shows the measured productivity that we observe, whereas the dashed
horizontal pink line represents the pure technology effects. The lines in between
represent the composition. Specifically the increasing gray dotted line shows the

32With ν � 1 and the deviation expressed as a growth rate, the coefficient is −
(
µ̃−1
µ̃−ν

)
|ν�1

� −1, which
verifies Jaimovich and Floetotto 2008, eq. 24. Therefore the coefficient here is smaller given µ̃.

33As it is a state variable it remains at the given initial condition N0 which we begin at steady state
N0 � Ñ

34Therefore we can identify instantaneous endogenous productivity effects as entirely due to profits
and long-run endogenous productivity effects as entirely due to markups. During transition it is a
combination of both.
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t

ˆTFP(t)

˜̂TFP � 0

Â(0) 1
ν

Fix. Markup Zero Profit

Â(0) 1
ν − µ̂(0)

(
µ̃−1
µ̃−ν

)

Endog. Markup Zero Profit

Endog. Markup & Profit

Â(0) 1
ν − µ̂(t)

(
µ̃−1
µ̃−ν

)
+ π̂(t)

(
µ̃−1
νφ

)
Â(0) 1

ν + π̂(0)
(
µ̃−1
νφ

)

0

Fix. Markup & Profit

Â(0) 1
ν + π̂(t)

(
µ̃−1
νφ

)

Endog. Markup & No Profit

Â(0) 1
ν − µ̂(t)

(
µ̃−1
µ̃−ν

)

Figure 2: Endogenous Productivity Decomposition, Positive Shock Ã→ A(0)

growing importance of markups in influencing measured TFP, whereas the decreasing
dotted red line shows the diminishing importance of profit bias. Separately, themiddle
green horizontal line shows the case that would arise if entry were instantaneous but
markups endogenous hence there is no profit effect and all bias arises from markups.
This is discussed from a quantitative perspective with Cobb-Douglas production and
flat marginal costs in Jaimovich and Floetotto 2008.

Figure 2 also emphasizes that at some time t′ the upward bias from profit and
markup effect equate. Before t′ the profit effect is the dominant component ofmeasured
TFP and after t′ the markup effect dominates. Therefore at some time t′ the two effects
will intersect

−µ̂(t′)
(
µ̃ − 1
µ̃ − ν

)
� π̂(t′)

(
µ̃ − 1
νφ

)
(72)

π̂(t′)
µ̂(t′)

� − νφ

µ̃ − ν � − ỹ (73)

This is the ratio of coefficients in (71). It shows that the relative importance of each effect
depends on the fixed cost and the steady-state markup.35 In the parametric numerical
exercise we estimate t′ � 5 quarters, implying the length of time for which the profit
bias dominates the markup bias.

3.1 Parametric Example

The baseline RBC model assumes isoelastic separable subutilties and a Cobb-Douglas
production function.

U (C, L) �
C1−σ − 1

1 − σ − ξ L1+η

1 + η
(74)

35The steady-state markup will also change indirectly with the fixed cost.
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y � Akα`β − φ (75)

Isoelastic utility implies there is constant elasticity of marginal utility with respect
to consumption and labor UCC

C
UC

� −σ and ULL
L

UL
� η.36 Frisch elasticity of labor

supply is given by 1
η , hence we calibrate inverse elasticity η ∈ (0,∞).37 Cobb-Douglas

production conforms to our assumptions on the production function derivatives. The
production function is homogeneous of degree ν ≡ α + β, where α and β are capital
and labor shares. Table 1 summarizes the calibration used for simulation. The time

Table 1: Parameter Values

Capital Share α 0.283
Labor Share β 0.567
Fixed Cost φ 2.5
Entry Congestion ζ 2.0
Technology A 1.0
Risk Aversion† σ 1.0
Discount Rate ρ 0.02
Labor Weight ξ 0.01
Labor Elast. (Frisch) η 0.5
Industry (inter) Subs. θI 1.0
Firm (intra) Subs. θF 8.0
† Unit risk aversion σ � 1 implies ln C

interval is a quarter and correspondingly ρ � 0.02 implies an annualized discount
rate of 8%.38 We calibrate the fixed cost φ to be a percentage of sales in steady-state
φ
ỹ ≈ 0.10. We choose the entry congestion parameter ζ such that firm convergence
is similar to Bilbiie, Ghironi, and Melitz 2012. That is, most convergence has taken
place within about 20 quarters (5 years), the approximate length of a cycle.39 The
intra- and inter- industry substitutability parameters are chosen in line with literature
(see table 2). Together with the steady-state number of firms these substitutabilities
imply that the steady state markup before shock is µ̃ �

θF Ñ
θF Ñ−1 � 1.42, which declines

following the shock in the endogenous markup case and is fixed at this level for the
exogenous markup benchmark. The capital and labor income shares follow Restuccia
and Rogerson 2008 who cite that estimates of α + β � 0.85 and then division between
the two is determined by a 1/3 capital to 2/3 labor share.40 These parameter values

36The limiting case of σ → 1 implies log utility ln(C), implying fixed aggregate labor in the long run
following a technology shock as income and substitution effects cancel out.

37η � 0 implies indivisible labor.
38Corresponding to a discount factor in the discrete time case of 1.08− 1

4 � 0.98 as in Restuccia and
Rogerson 2008.

39A more sophisticated approach could solve the industry dynamics second-order differential equa-
tion in partial equilibrium (r given by r̃ � ρ) then calibrate based on half-life of firm convergence.

40Also see Da-Rocha, Tavares, and Restuccia 2017 for the same approach to decreasing returns.
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Figure 3: Endogenous Vs Exogenous Responses

imply K̃
Ỹ
≈ 2.5 as suggested in US data (Rotemberg and Woodford 1993). The shock

shifts technology from A0 � 1 to A1 � 1.1.
Figure 3 shows the permanent shock to technology appearing unexpectedly in

period 20. The measured TFP improvement with dynamic entry and endogenous
markups (blue thick) exceeds underlying technology improvement by 40% on impact
as profits rise and remains 20%higher in the long-run once profits have been arbitraged
but competition has decreased markups. This follows from comparing the blue thick
with green dotted lines.41 The positive profit effect dominates the positive markup
effect for 5 quarters, but after 10 quarters the profit effect disappears leaving only the
long-run markup effect. These speeds will vary depending on the business dynamism
of a given economy. That is how fast firm entry is able to adjust to a shock, which is
determined by endogenously procylical sunk costs. When ζ → 0 an economy exhibits
strong business dynamism and will more accurately reflect underlying technology as
firms acquire positive profits for a shorter period of time.

4 Summary

The paper investigates the effect of firm entry on measured productivity over the busi-
ness cycle. I consider that entry is non-instantaneous leading to temporary profits and
entry affects the price markups that incumbents charge. Together these mechanisms

41The green dotted line that captures measured TFP with neither endogenous markups or dynamic
entry does not exactly reflect the technology change (dotted red) due to the ν component. The two lines
would be equivalent with ν � 1.
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can explain short-run procylical productivity and long-run persistence following a
technology shock.

The theory explains that productivity is exacerbated on impact, since firms cannot
adjust immediately so incumbents gain profits and expand output, and in the long run
underlying productivity is not regained because subsequent adjustment of firms causes
structural changes in competition. Furthermore I show that in highly competitive (low
markup) industries the distinction between short-run and long-run productivity is
small, so measured productivity quickly and accurately reflects underlying technol-
ogy. And industries with fast adjustment of firms (strong business dynamism), due to
low endogenous sunk costs, will observe measured productivity closer to underlying
technology. If business dynamism has declined, such that economic profits are pro-
tected for longer, this will have increased the importance of the profit bias in measured
TFP and delayed the importance of markup bias.
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A Dual Cost Function

The firm’s cost minimization problem yields the cost function dual to the intermediate
producer’s production function. The traditional Lagrange cost minimization problem
yields the nominal cost function

C(r, w , y ı) � rk ı + w` ı � MC ı ν(y ı + φ) (76)

where the Lagrange multiplier is the MC.42 However the MC is not independent of
output, unless there are constant marginal costs. For homothetic functions (of which
homogeneous functions are a subset) the cost function can be rearranged to isolate
output effects. A hod-ν production function exhibits unit-cost function form43

C(r, w , y ı) �
(

y ı + φ
A

) 1
ν

C(r, w , 1) (78)

where the unit cost function C(r, w , 1) is independent of output.44 Given this, the
cost function representation (78) implies the marginal cost is positive and increasing if
ν ∈ (0, 1), but flat with ν � 1

MC �
∂C(r, w , y ı)

∂y
�

1
ν

C(r, w , y ı)
y + φ

> 0 (79)

∂MC
∂y

�
1 − ν
ν

MC
y ı + φ

> 0 if ν ∈ (0, 1) (80)

From (78), we can see the average cost curve is U-shaped with increasing marginal
costs ν ∈ (0, 1) and an overhead cost φ

AC �
C(r, w , y ı)

y ı
�

C(r, w , 1)(y ı + φ)
1
ν

y ı
(81)

42Where the Lagrange multiplier is marginal cost, a firm’s cost minimization problem yields r �

MC AFk and w � MC AF` leading to cost function (76) by C � rk + w`. Dividing factor prices by P ı
yields the factor market equilibrium in markup terms. The real cost function, where factor prices are in
real terms, is

C(r, w , y ı)
P ı

�
r

P ı
k ı +

w
P ı
` ı �

MC ı

P ı
ν(y ı + φ) �

ν
µ ı

(y ı + φ) (77)

43The outline is that the production function can be rearranged for constant-output factor demands
k(y , k/`, w , r), `(y , `/k , w , r) and substituted into rk + w` which gives the multiplicative form but with
k/` ratios in the second part. Then the Lagrangean cost minimization FOCs imply that this ratio is
independent of y, as is the case for all homothetic functions.

44I have assumed an output denomiated overhead cost such that π ı � P ıAF(k ı , ` ı)−P ıφ−w` ı−rk ı ,
whereas denominating the overhead cost in terms of a factor of production, e.g. π ı � P ıAF(k ı , ` ı) −
wφ − w` ı − rk ı , would give a unit cost function C(r, w , y ı) �

(
y

1
ν
ı + φ

)
C(r, w ,A, 1).
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∂AC
∂y

�
AC
y

(
1

ν(1 + sφ)
− 1

)
, where sφ ≡

φ

y
(82)

A.1 Minimum Efficient Scale (MES)

From the U-shaped AC curve slope (82), average costs are minimized when the share
of fixed costs in output is sφ �

1−ν
ν . The corresponding output is at the firms’minimum

efficient scale (MES)

yMES
�

νφ

1 − ν (83)

Returns to scale are also constant RTS � ν(1 + sφ) � 1 at this level of output as average
and marginal costs intersect at the minimum. We can also observe from (46) that the
minimum efficient scale maximizes measured TFP.

The MES is an indicator of market structure. It is the socially optimal firm size
that gives the lowest production costs per unit of output.45 In symmetric equilibrium
the overall size of the market is equivalent to aggregate output or industry output
Y � Q � N y, which in steady state equates to consumption Ỹ � C̃. If the minimum
efficient scale is small relative to the overall size of the market (demand for the good),
there will be a large number of firms N �

Y
yMES . The firms in this market will behave in

a perfectly competitive manner due to the large number of competitors. Hence φ will
be the main determinant of market structure, and in turn the endogenous markup.

B Endogenous Markup Details

B.1 Aggregate and Industry Demands

The program faced by the final output producer is

max
Q  , ∈[0,1]

{
PY −

∫ 1

0
Q p d 

}
(84)

subject to the aggregate output production function

Y �

[∫ 1

0
Q

θI−1
θI
 d 

] θI
θI−1

, θI ≥ 1 (8)

45In the steady state analysis (Section 2.4.1) we show that the minimum efficient scale arises under
perfect competition (i.e. no markups µ � 1).
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The first-order condition gives constant-elasticity inverse demand for industry 

P  �
(

Q 

Y

)− 1
θI

P (85)

The program faced by the industry is

max
y ı , ı∈(1...N)




p Q  −
N∑

1
y ıp ı




(86)

subject to the industry output production functionwhere ϑ ∈ [0,∞) is a variety effect46

Q  � N1+ϑ


1
N

N∑

ı�1
y
θF−1
θF
ı



θF
θF−1

, θF > θI ≥ 1 (9)

This leads to industry-level inverse demand47

P ı �
[

y ı
Q 

]− 1
θF

N−
1
θF

+ϑ
θF−1
θF P  (90)

Combining the aggregate and industry level inverse demands gives the firm-level
inverse demand

P ı �
(

y ı
Q 

)− 1
θF

(
Q 

Y

)− 1
θI

N−
1
θF

+ϑ
θF−1
θF P (10)

B.2 Firm Profit Maximization Problem

The individual firm solves

max
y ,ı

π ı � P ı y ı − C(r, w , y ı) (91)

46In comparable setups Jaimovich and Floetotto 2008 remove the variety effect ϑ � 0 whereas Atkeson
and Burstein 2008 leave it in ϑ �

1
θF−1 , θF > 1.

47The elasticity of demand depends on own-effect on industry quantities

∂P ı
∂y ı

� − 1
θF

P ı
y ı

+
1
θF

P ı
Q 

∂Q 

∂y ı
(87)

∂P ı
∂y ı

y ı
P ı

� − 1
θF

+
1
θF

y ı
Q 

∂Q 

∂y ı
(88)

εP ı y ı � −
1
θF

+
1
θF
εQ ı y ı (89)
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subject to inverse demand (10) and cost function (78) and taking factor prices as given.
This implies that at optimal MR ı � MC ı. Marginal revenue depends on both the price
gained from increasing output but, due to price setting ability, also the negative effect
on price level captured by the price elasticity of demand ε ı

ε ı ≡ −
∂y ı
∂P ı

P ı
y ı

(92)

MR ı �
∂P ı
∂y ı

y ı + P ı � P ı

(
ε ı − 1
ε ı

)
(93)

Therefore, since MR ı � MC ı, a firm prices at a markup µ ı ∈ (1,∞) of price over
marginal cost

µ ı ≡
P ı

MC ı
�

ε ı

ε ı − 1 (94)

B.2.1 Endogenous Price Elasticity of Demand

At the firm-level an individual firm will maximize profits subject to inverse demand
(10) and its production function (11). Crucially the firm has a degree of price setting
ability over P ı. Under quantity competition (Cournot), it chooses y ı.48 Differentiating
(10) with respect to y ı andmultiplying by − y ı

P ı gives inverse price elasticity of demand

ε−1
ı � −∂P ı

∂y ı

y ı
P ı

�
1
θF

+

[ 1
θI
− 1
θF

] ∂Q 

∂y ı

y ı
Q 

(95)

There are two components to the inverse price elasticity of demand: a regular direct
effect that occurs with monopolistic competition and a second endogenous effect that
arises because firms are ‘large’ in their industry and thus can affect industry output
Q . Therefore by choosing their own production y ı, a firm has a direct effect 1

θF
and an

indirect effect through ∂Q 

∂y ı
. It is the indirect effect that causes endogenous markups,

and in its absence (when firms are atomistic ∂Q 

∂y ı
� 0) there is standard monopolistic

competition from the direct effect. Later, when we impose symmetric equilibrium, we
shall see y ı

Q 

∂Q 

∂y ı
�

1
N which makes the price elasticity of demand and in turn markup

dependent on number of firms.

48See Appendix B.3 for Bertrand case.
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B.3 Bertrand Derivation of Markup

For the Bertrand case we recast each first order condition to obtain conditional demand
as a function of prices. Therefore (85), (90), (10) become (96), (97), (98).

Q  �

(
P 
P

)−θI

Y (96)

y ı �
(

P ı
P 

)−θF ( 1
N

)1−ϑ(θF−1)
Q  (97)

y ı �
(

P ı
P 

)−θF (
P 
P

)−θI ( 1
N

)1−ϑ(θF−1)
Y (98)

The corresponding price indices follow from substituting the two FOCs (96), (97) into
their corresponding constraints (production functions) (8), (9), giving aggregate price
index and industry price index

P �

(∫ 1

0
P1−θI
 d 

) 1
1−θI

(99)

P  � N
1

θF−1−ϑ *
,

N∑

1
P1−θF
ı

+
-

1
1−θF

(100)

Under Bertrandfirmsmaximize profits subject to conditional demand (98) by choos-
ing P ı. Therefore

∂y ı
∂P ı

� −θF
y ı
p ı

+ (θF − θI )
y ı
P 

∂P 
∂P ı

(101)

From the industry-level price index P  � N
1

θF−1−ϑ
(∑N

1 P1−θF
ı

) 1
1−θF then

∂P 
∂Pı 

�
P 

∑N
1 P1−θF

ı

P−θF
ı (102)

Thus under symmetry ∂P 
∂Pı 

�
1
N

P 
P ı . Hence defining price elasticity of demand

ε ≡ −∂y ı
∂P ı

P ı
y ı

(103)

Then (98) becomes

ε � θF − (θF − θI )
1
N

(104)
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Therefore for Bertrand the markup is

µ(N)B
�

θI + θF (N − 1)
(θF − 1)N − (θF − θI )

�

1 − 1
N

(
1
θI
− 1
θF

)
θI

1 − 1
θF
− 1

N

(
1
θI
− 1
θF

)
θI
, θF > θI ≥ 1 (105)

εBµN �
NθF

θI + θF (N − 1)

(
1 − θF − 1

θF
µB

)
< 0 (106)

B.4 Cournot and Bertrand first-order Equivalence

To a first-order approximation the relationship between the markup and number of
firms is the same under price and quantity competition. For Bertrandwe can rearrange
the markup to

θI

( 1
θI
− 1
θF

) 1
N

� 1 − 1
θF
− 1
µ

(107)

For Cournot we can rearrange the markup to

( 1
θI
− 1
θF

) 1
N

� 1 − 1
θF
− 1
µ

(108)

If we take logarithms and then differentiate with respect to time both relationships
give

−N̂ �

(
1 − 1

θF
− 1
µ̃

)−1 µ̂

µ̃
(109)

B.5 Cournot Markup as a Function of Bertrand

The Cournot and Bertrand markups are related as follows

µC
�

µB

θI
(

1
θI
−

[
1 + µB

(
1
θI
− 1

)]
1
N

(
1
θI
− 1
θF

)) (110)

This follows from rewriting the Cournot markup as Bertrand

µC
�

[
(µB)−1 (1 − ΥθI ) + ΥθI − Υ

]−1
, where Υ �

1
N

( 1
θI
− 1
θF

)
(111)

and rearranging.

B.6 Markup Calibration Survey

Table 2 surveys the intersectoral θI and intrasectoral θF parameters used in the litera-
ture.
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Table 2: Endogenous Markup Literature Survey

θI θF µ εµN

Cournot εC � 1 − θF−1
θF

µC

Atkeson et al., p.2015 1.01 10.0 1(
θF−1
θF

)
− 1

N

(
1
θI
− 1
θF

) 1 −
θF−1
θF(

θF−1
θF

)
− 1

N

(
1
θI
− 1
θF

)

Jaimovich et al., App p.151 1.001 ∞ θI N
θI N−1 − 1

θI N−1
Etro et al., p.1215 1.0 6.0, 20.0,∞ θF N

(θF−1)(N−1) − 1
N−1

†

Colciago et al., p.11042 1.0 ∞ N
N−1 − 1

N−1
Bertrand εB �

NθF
θI+θF (N−1)

(
1 − θF−1

θF
µB

)

Jaimovich et al., p.12483 1.001 19.6 θI+θF (N−1)
(θF−1)N−(θF−θI )

Etro et al., p.1216 1.0 6.0, 20.0 1+θF (N−1)
(θF−1)(N−1)

Lewis et al., p.6784 1.00‡ 2.624 θI+θF (N−1)
(θF−1)N−(θF−θI )

1 Portier 1995; Brito, Costa, and Dixon 2013 also use Cournot with homogeneous goods but differentiated industries.
2 Homogeneous goods and unitary elasticity is common in theoretical papers e.g. Dos Santos Ferreira and Dufourt 2006; Opp, Parlour, and Walden
2014.

3 Jaimovich and Floetotto 2008, p.1248 specify their nested CES aggregators as a p-norm τ and Holder conjugate ω, rather than elasticities, hence
θI �

1
1−ω �

1
1−0.001 � 1.001 and θF �

1
1−τ �

1
1−0.949 � 19.6.

4 Lewis and Poilly 2012, p.680 plot their competition effect for a domain of substitutabilities θI , θF ∈ (1.0, 4.0)2 .
† θF does not affect the markups elasticity to number of firms when there is unitary elasticity across industries.
‡ Estimated value to 2 decimal places.

B.7 Graphical Illustration of Markup Properties
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Figure 4: Markup Comparison
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Figure 5: Markup Properties

C Returns to Scale Derivations

There are two ways to identify returns to scale. The first is based on market structure,
namelymarkups and profits, whereas the second is based on technical properties of the
production function and its dual cost function, namely fixed costs and homogeneity
parameter.

C.1 Market Structure Approach

First, from the profit definition, without imposing restrictions on the cost function.

π ı � P ı y ı − C(r, w , y ı) � (P ı −AC ı)y ı (112)

Divide by P ı y ı and multiply AC ı by MC ı /MC ı to express as a markup

sπ � 1 − AC ı

P ı
� 1 − AC ı

MC ı

MC ı

P ı
(113)
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RTS ı � µ ı
(
1 − π ı

P ı y ı

)
� µ ı (1 − sπ) , where, sπ ≡

π ı

P ı y ı
(114)

The profit share sπ is the share of operating profits in sales revenue.

C.2 Production Function / Cost Function Approach

Second, from the cost function that occurs under cost-minimizing factor prices (input
demands). The Lagrange costminimization problemyields factor demands in nominal
terms as w � λAF` and r � λAFk , where the Lagrange multiplier is the MC, plugging
these into the cost function C � rk + w` gives:49

C ı � MC ı ν(y ı + φ) (115)

Divide by y ı MC ı

RTS ı � ν(1 + sφ), where, sφ �
φ

y ı
(116)

Remember the fixed cost is output denominated, so prices cancel sφ �
P ıφ
P ı y ı �

φ
y ı . We

could also obtain this by dividing the explicit expressions for AC and MC, (81) and
(79), that we obtain from the cost function rewritten in unit cost form.

D Model Summary

Table 3 summarizes the model. The core of the model is a four dimensional dynamical
system that determines consumption, entry, capital and number of firms (C, E, K,N).
Labor supply L does not enter the system as an independent variable because it can be
defined in terms of C, K,N through labor market equilibrium.

49We could divide by prices and begin with the familiar real cost function C
P �

ν
µ (y + φ).
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Static

(34) Markup (Cournot) µ(N) �
[
1 − 1

θF
− 1

N

(
1
θI
− 1
θF

)]−1

(5) Labor Supply w � − uL (L)
uC (C)

(37) Labor demand w �
AF` (k ,`)
µ(N)

(36) Capital Rental r �
AFk (k ,`)
µ(N)

(11) Output per Firm y � AF(k , `) − φ
(39) Operating Profit per Firm π � (y + φ)

(
1 − ν

µ(N)

)
− φ

(20) Aggregate Labour L � N`
(19) Aggregate Capital K � Nk
(29) Aggregate Output Y � N y
(42) TFP TFP �

y

F(k ,`)
1
ν

(49) Entry Cost q � ζE
(48) Firm Value (free entry) V � q
(55) Entry Investment Z �

ζ
2 E2

(61) Aggregate Accounting Y � C + I + Z
Dynamic
(4) Consumption Euler Ċ � − uC (C(t))

uCC (C(t)) (r(t) − ρ)
(50) Entry arbitrage V̇ � r(t)V (t) − π(t)
(3) Capital Investment K̇ � I(t)
(51) Entry Definition Ṅ � E(t)
Boundary Values
(7) Capital Initial Condition K(0) � K0

(53) Firms Initial Condition N (0) � N0

(6) Capital Transversality limt→∞ e−ρt uC (C(t))K(t) � 0
(54) Firms Transversality limt→∞ e−ρt uC (C(t))q(t)N (t) � 0

Table 3: Model Summary

In the dynamical system we typically use the capital accumulation (60) K̇ � Y(t) −
ζ
2 E(t)2 − C(t) and entry arbitrage (52) Ė � r(t)E(t) − π(t)

ζ representations, implying the
state of the dynamical system is C, E, K,N space.

E Labor Responses

Labor market equilibrium occurs where labor demand (14) equals labor supply (5),
and it allows us to understand endogenous labor behaviour.50

50Related literature (Devereux, Head, and Lapham 1996b; Jaimovich 2007) terms (14) the aggregate
labor demand function.
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Proposition 4. In general equilibrium the response of aggregate labor is negative to consump-
tion and positive to capital and entry

∂L
∂K

� Φ−1 FLK

FL
> 0 (117)

∂L
∂C

� Φ−1 uCC

uC
< 0 (118)

∂L
∂N

� Φ−1 1
N

(
1 − ν − εµN

)
> 0 (119)

where Φ ≡
[

uLL
uL
− FLL

FL

]
�

[ εuL L−εFL L

L

]
> 0.

Proof. See Appendix �

Capital increases labor because a rise in capital increases the marginal product
of labor (FLK > 0) which consequently raises wage and labor supply. Consumption
decreases labor supply because additional consumption reduces the marginal utility
of consumption (uCC < 0) so the value of consumption declines, thus reducing labor
to support consumption (leisure becomes more attractive). The effect of entry on labor
supply is more complex.

Corollary 1. Increasing marginal costs 1 − ν > 0 and countercyclical markups εµN < 0
augment the labor response to entry. With constant marginal costs ν � 1 and fixed markups
εµN � 0, entry does not affect labor dL

dN � 0.

The first effect is from increasing marginal costs (1− ν > 0), so that as entry divides
inputs (labor and capital) across more units, the marginal product of labor increases
MPL � AN1−νFL (K, L), hence wage w �

MPL
µ and consequently labor increase. The

second positive effect occurs because entry decreases the markup between wage and a
worker’s marginal product.51

The total effect of technology on labor incorporates the endogenous adjustments of
these variables.

dL
dA

�
∂L
∂A

+
∂L
dC

dC
dA

+
∂L
dK

dK
dA

+
∂L
dN

dN
dA
R 0, where ∂L

∂A
� Φ−1 1

A
> 0 (120)

Assuming technology increases consumption, capital andfirms, then there is a negative
income effect from consumption and a positive substitution effect from the direct,
capital and entry effects. Therefore the overall effect is ambiguous. Labor increases
if substitution effects dominate income effects. In the short run, when number of
firms and capital are fixed, only the positive partial effect and negative consumption

51The first effect (returns to scale) is present in Rotemberg 2008; Barseghyan and DiCecio 2011 and
the second effect (endogenous markups) is studied in Cook 2001; Jaimovich 2007. The effects can be
interpreted through wage behaviour, as in Jaimovich 2007, see appendix.
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effect influence the impact labor response to technology.52 On impact of a shock to A
the response of output y will depend on a direct effect from A and an indirect effect
through L but importantly the state variable capital and number of firms are fixed
K � K̄ and N � N̄ , thus y(0) � A(0)N̄−νF(K̄ , L(A(0))) − φ. Labor does not necessarily
increase, and nor does it need to in order to expand output. Output expands on impact
providing the direct effect outweighs the possibility of a negative labor effect. If the
substitution effect, of a higher MPL and in turn wage, dominates the income effect of
a rise in consumption such that labor increases on impact, then this is sufficient for an
output expansion.53

E.1 Labor Responses Proof

Proof of Proposition 4. The partial derivatives of utility have the following properties:
uCC , uLL , uL < 0, uC > 0 and uCL � uLC � 0. From the intratemporal condition and
wage equation

Ξ(L, C, K,N,A) ≡ uL (L) + uC (C)w(L, K,N) � 0 (5)

w(L, K,N) �
A

µ(N)
N1−νFL (K, L) (14)

take the total derivative, treating {C, K,N } independently, with respect to dummy $

0 �
∂Ξ
∂L

dL
d$

+
∂Ξ
∂C

dC
d$

+
∂Ξ
∂K

dK
d$

+
∂Ξ
∂N

dN
d$

+
∂Ξ
∂$

(121)

dL
d$

� −
(
∂Ξ
∂L

)−1 [
∂Ξ
∂C

dC
d$

+
∂Ξ
∂K

dK
d$

+
∂Ξ
∂N

dN
d$

+
∂Ξ
∂$

]
(122)

dL
d$

�
∂L
∂C

dC
d$

+
∂L
∂K

dK
d$

+
∂L
∂N

dN
d$

+
∂L
∂$

(123)

Replacing the dummy $ with each of the endogenous variables {C, K,N }, we get
that the total and partial derivatives are equivalent and follow the usual multivariate
implicit function rule

∂L
∂C

� −
∂Ξ
∂C
∂Ξ
∂L

� Φ−1 uCC

uC
�

dL
dC

(124)

∂L
∂K

� −
∂Ξ
∂K
∂Ξ
∂L

�
1
w
Φ−1 ∂w

∂K
�

dL
dK

(125)

52The instantaneous response of labor to aggregate technology shocks is an unsettled debate (see
Basu, Fernald, and Kimball 2006).

53With logarithmic consumption utility, the income and substitution effects equate in the long run so
that long-run labor supply is irresponsive to technology.
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∂L
∂N

� −
∂Ξ
∂N
∂Ξ
∂L

�
1
w
Φ−1 ∂w

∂N
�

dL
dN

(126)

where Φ ≡
[

uLL
uL
− FLL

FL

]
�

[ εuL L−εFL L

L

]
and to finish we subsitute in

∂Ξ
∂L

� uLΦ < 0 (127)

∂w
∂C

� 0 � 0 (128)

∂w
∂L

� w
FLL

FL
< 0 (129)

∂w
∂K

� w
FLK

FL
> 0 (130)

∂w
∂N

�
w
N

(
1 − ν − εµN

)
> 0 (131)

�

Notice that we treat the endogenous variables {C, K,N } independently so that total
and partial derivatives equate. However a change in an exogenous parameter, such as
technology $ � A, causes all endogenous variables to respond in addition to its partial
effect from holding C, K,N constant.

dL
dA

�
∂L
∂C

dC
dA

+
∂L
∂K

dK
dA

+
∂L
∂N

dN
dA

+
∂L
∂A

�
dL
dC

dC
dA

+
dL
dK

dK
dA

+
dL
dN

dN
dA

+
∂L
∂A

(132)

where

∂L
∂A

� −
∂Ξ
∂A
∂Ξ
∂L

�
1
w
Φ−1 ∂w

∂A
,

dL
dA

(133)

∂w
∂A

�
w
A

> 0 (134)

F Reduced-form Aggregate Production Function

Our aim is to explain aggregate output as a function of inputs K, L. The derivation
uses Y � N y, y � AF(k , `) − φ and π �

(
1 − ν

µ

)
(y + φ) − φ.

y � N−νAF(K, L) − φ (135)

Use, y + φ � (π + φ)
(
1 − ν

µ

)−1
(136)

(π + φ)
(
1 − ν

µ

)−1
� N−νAF(K, L) (137)
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Use, N �
Y
y

(138)

Yν
� yνAF(K, L)(π + φ)−1

(
1 − ν

µ

)
(139)

Use, y �

(
π +

ν
µ
φ

) (
1 − ν

µ

)−1
(140)

Y �

(
A

π + φ

) 1
ν
(
1 − ν

µ

) 1
ν−1 (

π +
ν
µ
φ

)
F(K, L)

1
ν (141)

G Dynamics and existence

Themodel consists of a four-dimensional dynamical system in X � [C, E, K,N]ᵀ. It is a
first-order system of ordinary differential equations in nonlinear form Ẋ � g(X) given
by:

Ċ � − uC (C(t))
uCC (C(t))

(r(t) − ρ)

Ė � r(t)E(t) − π(t)
ζ

K̇ � Y(t) − ζ2 E(t)2 − C(t)

Ṅ � E(t)

Linearization of the nonlinear form gives Ẋ ≈ J(X̃)(X(t) − X̃).54 J(C̃, Ẽ, K̃ , Ñ) is the
Jacobian matrix. Each element of the Jacobian matrix is a respective partial derivative
evaluated at steady state.55



Ċ
Ė
K̇
Ṅ



≈



− uC
uCC

rC 0 − uC
uCC

rK − uC
uCC

rN

−πC
ζ ρ −πK

ζ −πN
ζ

YC − 1 0 YK YN

0 1 0 0





C(t) − C̃
E(t)

K(t) − K̃
N (t) − Ñ



(142)

This matrix differential equation has open-loop solution in terms of initial values K0,N0;
steady states C̃, Ẽ, K̃ , Ñ ; time t and the exogenous parameters of the model given by

54By definition variables are constant at steady state so that evaluating at steady state the differential
form is dẋ � [ẋ(t) − ˜̇x] � ẋ(t).

55The derivatives are partial since they treat {C, E, K,N } as independent. Labor is a function of
these variables through the intratemporal condition L(C, K,N). The linearized solution has a recursive
structure, denoting the solution paths C∗(t), E∗(t), K∗(t),N∗(t), they will all be a function of {t , [K0 −
K̃], [N0−Ñ]} and structuralmodel parameters in open-loop formor {[K(t)−K̃], [N (t)−Ñ]} in closed-loop
form. At time zero C(0) and E(0) will respond, whereas K(0) and N (0) remain fixed and subsequently
move after C(0), E(0) adjust.
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(Caputo 2005, p. 494-495):

X(t) � X̃ + aV1eλ1t
+ bV2eλ2t

and the time derivative, which allows us to substitute out fluctuations X̂ � Ẋ/X̃ in our
log-linearized analysis, is

Ẋ(t) � λ1aV1eλ1t
+ λ2bV2eλ2t

where X � [C, E, K,N]ᵀ and Vj � [v1, j , v2, j , v3, j , v4, j]ᵀ j ∈ {1, 2} are the normalized
eigenvectors associated with stable eigenvalues λ1 < λ2 < 0. The eigenvectors and
eigenvalues consist of model parameters and are derived from the Jacobian matrix.
The constants are a �

K̂−v3,2N̂
v3,1−v3,2

and b �
v3,1N̂−K̂
v3,1−v3,2

where K̂ � K0 − K̃ and N̂ � N0 − Ñ , so in
long-hand, noting Ẽ � 0, we have

C(t) � C̃ +
(K̂ − v3,2N̂)v1,1eλ1t + (v3,1N̂ − K̂)v1,2eλ2t

v3,1 − v3,2
(143)

E(t) �
(K̂ − v3,2N̂)λ1eλ1t + (v3,1N̂ − K̂)λ2eλ2t

v3,1 − v3,2
(144)

K(t) � K̃ +
(K̂ − v3,2N̂)v3,1eλ1t + (v3,1N̂ − K̂)v3,2eλ2t

v3,1 − v3,2
(145)

N (t) � Ñ +
(K̂ − v3,2N̂)eλ1t + (v3,1N̂ − K̂)eλ2t

v3,1 − v3,2
(146)

The right-hand side only depends on t and exogenously given parameters, which in
the Cobb-Douglas production with isoelatic utility cases means they are a function of:

(t; K0,N0, K̃ , Ñ , , C̃, Ẽ, ζ, φ, ν, θI , θF , η, σ, ξ, ρ)

Our transition experiments specify the initial capital and number of firms equal to
steady state under the old technology. We then study transition towards the new
technology, thus a perfect foresight equilibrium. Formally, the model begins at
steady-state under the old technology (K0,N0) � (K̃(Aold), Ñ (Aold)) and transitions to
(K̃ , Ñ) � (K̃(Anew), Ñ (Anew)) under the new technologywhich comes online in period
t � 0.
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G.1 Eigenvalues

To compute the eigenvalues of the system, we solve for the roots of the characteristic
polynomial corresponding to the Jacobian:

c(λ) � det(J − λI) � λ4 −M1λ
3
+ M2λ

2 −M3λ + M4 (147)

where coefficients Mk denote the sum of principal minors of dimension k, therefore
M1 � Tr(J) and M4 � det(J). The trace is unambiguously positive, whereas endoge-
nous markups (εµN < 0) make the determinant ambiguous (with exogenous markups
the determinant is strictly positive).56 Since Tr(J) > 0 and det(J) > 0, there are either
two or four positive eigenvalues. By Descartes’ rule of signs restrictions on M2 and
M3 can rule out the global instability case (four positive eigenvalues), so that we focus
on the saddle-point stable case of two positive and two negative eigenvalues. There-
fore the system is a saddle with a two dimensional stable manifold defined on K,N .
Hence capital and number of firms, so capital per firm, are fixed on impact whereas
consumption and entry C, E jump instantaneously on to the stable arm.57

Characteristic Polynomal

The supplementary appendix provides an extended version of this section. Below
we show that M1 � Tr(J) > 0 and M4 � det(J) > 0, thus the sequence of signs of
coefficients of the characteristic polynomial is

{+,−,±,±,+}

Leaving two coefficients unspecified, there is a minimum of two sign changes and a
maximum of four sign changes. Hence, by Descartes’ rule of signs (for positive roots),
there are either four, two or zero positive roots.58 The zero positive roots case is ruled
out by a positive trace, the four positive root case (implying asymptotic stability) is
consistent with positive trace and positive determinant but can be ruled out if the
two unspecified signs are of the same sign, either +,+ or −,−. The four solutions of
this quartic polynomial are saddle stable if there are two positive (unstable) and two

56I providenecessary conditions for a positivedeterminant and this also ensures steady-state existence.
The Jacobian determinant of the dynamical system is equivalent to the determinant of the Jacobian of
the steady-state conditions (62) - (65). Hence the conditions for it to be positive ensure steady-state is
well-defined.

57A supplementary appendix provides full derivation of dynamic solutions.
58If unspecified coefficients are zero, the possibility of one sign change occurs if ±,± are 0, 0 or 0,+ or

−, 0. However, from the positive trace and determinant, we know there are either four positive roots, or
two positive and two negative roots.

39



negative (stable). We denote these eigenvalues

λ1 ≤ λ2 < 0 < λ3 ≤ λ4

We derive the general minors and thus coefficents on the quartic polynomial for the
general case.

Jacobian Trace

The trace of the Jacobian matrix is

Tr(J) � −Φ−1 FKL

FK
ρ + ρ +

(
1 +Φ−1 FKL

FK

)
ρµ̃ (148)

� ρ
(
1 + µ̃ + (µ̃ − 1)Φ−1

)
(149)

� ρ(1 + µ̃)
(
1 +

(
µ̃ − 1
µ̃ + 1

)
Φ−1

)
> 0 (150)

with perfect competition µ̃ � 1 then Tr(J) � 2ρ.

Jacobian Determinant

A lengthy derivation shows the determinant of the Jacobian associated with the dy-
namical system is positive when the endogenous markup effect is sufficiently small,
where I provide the sufficient condition.

det J �
Ñ
εuCC

φ

ζ
ν
µ

{
Θ + ΓεµN N

}
(151)

where

Θ �

(
L

εuLL − εFLL

) ( ρ
N

)2
µ(εuCC − εuLL)

(FKL

FL
− FKK

FK

) FL

FK
< 0 (152)

Γ � y
(
1 +

y
φ

)
Φ−2

( ρ
N

)2
µ

*
,


Φ +

F2
LK

FLFKK



FKKFL

F2
K

{
εuCC

y
− ΦN
ρµ

FK

FL
+ 1

}
−

(
Φ +

FLK

FK

)2
+
-
R 0 (153)

where elasticities are defined as εuL ,L ≡ uLL
uL

L. Then, remembering εuCC < 0

det J R 0 ⇐⇒ Θ + ΓεµN N Q 0 (154)
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Hence this provides a necessary condition for a positive determinant

Θ + ΓεµN N < 0 (155)

Since Θ < 0, εµN N < 0, a sufficient condition is

Γ ≥ 0 (156)

Or, if Γ < 0, less restrictive

ΓεµN N < −Θ (157)

εµN N > −Θ
Γ

(158)

Hence the negative markup effect must be sufficiently small.

G.2 Eigenvectors

To calculate the four eigenvectors corresponding to the eigenvalues λ j , j ∈ {1, 2, 3, 4}
solve (J − λ jI)V j � 0 for V j . By definition, the eigenvalues are chosen such that
det(J − λ jI) � 0, and a zero determinant implies matrix J − λ jI is completely linearly
dependent (perfectly coupled). Then the eigenvectors are unique only up to a scalar
multiple. Hence choose v4, j � 1 as the normalization. The result is normalized
eigenvectors. Then by multiplying out (J − λ jI)[v1, j v2, j v3, j 1]ᵀ � 0, it is immediate
from row four that v2, j � λ j . With v2, j � λ j , v4, j � 1, we get from row 1 and 3

v1, j �
1

C
σ rC − λ j

[−C
σ

rn − C
σ

rKv3, j

]
(159)

v1, j �
1

YC − 1
[
−Yn − (YK − λ j)v3, j

]
(160)

Equating and solving

v3, j �
C
σ rn (YC − 1) − Yn ( C

σ rC − λ j)

( C
σ rC − λ j)(YK − λ j) − C

σ rK (YC − 1)
(161)

Plug back in

v1, j �
C
σ (rKYn − rn (YK − λ j))

( C
σ rC − λ j)(YK − λ j) − C

σ rK (YC − 1)
(162)
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So the four normalized eigenvectors are



v1, j

v2, j

v3, j

v4, j



�



C
σ (rKYn−rn (YK−λ j ))

( C
σ rC−λ j )(YK−λ j )− C

σ rK (YC−1)

λ j
C
σ rn (YC−1)−Yn ( C

σ rC−λ j )
( C
σ rC−λ j )(YK−λ j )− C

σ rK (YC−1)

1



, j ∈ {1, 2, 3, 4} (163)

In general derivative terms these results follow Brito and Dixon 2013 where there is
perfect competition, and Savagar and Dixon 2017 where there is (constant markup)
imperfect competition. However, due to the endogenous markup derivatives with
respect to N will change and steady-states that derivatives are evaluated around will
also change.

H Parametric Model and Steady State

We begin with isoelastic utility

U (C, L) �
C1−σ − 1

1 − σ − ξ L1+η

1 + η
(164)

The partial derivatives are

UC � C−σ , UCC � −σUC

C
, UL � −ξLη , ULL � η

UL

L
(165)

and Cobb-Douglas production

F(k , `) � kα`β � KαLβN−(α+β)
� F(K, L)N−(α+β) (166)

so derivatives are

Fk � αkα−1`β � αKα−1LβN1−(α+β) , (167)

F` � kαβ`β−1
� KαβLβ−1N1−(α+β) (168)

H.1 Parametric Equilibrium Conditions

L is defined in terms of (C, K,N) through the intratemporal condition, which conforms
to our theoretical derivations for optimal labor behaviour.

L �

(
AKαβN1−(α+β)

µ(N)ξCσ

) 1
1+η−β

(169)
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Under this parameterization the dynamical system is

Ċ �
C
σ

[
1

µ(N)
AαKα−1LβN1−(α+β) − ρ

]
(170)

Ė �
1

µ(N)
AαKα−1LβN1−(α+β)E

− 1
ζ

(
AKαLβN−(α+β)

(
1 − ν

µ(N)

)
− φ

)
(171)

K̇ � N
[
AKαLβN−(α+β) − φ

]
− ζ2 E2 − C (172)

Ṅ � E (173)

H.2 Parameteric Steady State

The intratemporal condition is

C̃ � *
,

βAk̃α ˜̀β−1−ηÑη

µ(Ñ)ξ
+
-

1
σ

(174)

The dynamical system is

C̃ �
φν

µ(Ñ) − ν Ñ (175)

Ẽ � 0 (176)

αk̃α−1`(k̃ , Ñ)β �
µ(Ñ)ρ

A
(177)

k̃α ˜̀(k̃ , Ñ)β �
φ

A
(
1 − ν

µ(Ñ)

) (178)

Substituting C̃(Ñ) into the intratemporal condition

˜̀(k̃ , Ñ) �
*...
,

Ak̃αβÑ−σ−η

µ(Ñ)ξ
(

φν

µ(Ñ)−ν

)σ
+///
-

1
1+η−β

(179)

Solving (177) and (178) gives k̃ and ˜̀

k̃(Ñ) �
φα

(µ(Ñ) − ν)ρ
(180)

˜̀(Ñ) �


µ(Ñ)
A

(ρ
α

)α (
φ

µ(Ñ) − ν

)1−α

1
β

(181)
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Capital per firm is decreasing in market power, whilst labor per firm is ambiguous
depending on the capital-labor income ratio r̃ k̃

w̃ l̃
�

α
β .

∂ ˜̀
∂µ̃

�
˜̀

µ̃(µ̃ − ν)

(
α
β

(µ̃ − 1) − 1
)
R 0 ⇐⇒ α

β
(µ̃ − 1) R 1 (182)

An increase in number of firms, decreasesmarket power and increases capital per firm.
This is important to explain why output per firm ỹ increases, which we have shown in
general. Rearranging the intratemporal condition (179) gives a nonlinear function in
terms of Ñ .

Ñ � *
,

(
α
ρν

)σ Aβ

µ(Ñ)ξ k̃σ−α ˜̀1+η−β
+
-

1
σ+η

(183)

where k̃ , ˜̀ are defined in (180) and (181) as functions of Ñ . Therefore solving this
nonlinear expression numerically gives Ñ , which in turn provides C̃, K̃ , L̃ by (175, 180,
181). Equation (184) presents equation (183) in Ñ terms only.

Ñ �



β

ξνσ




(
A

(
α
ρ

)α)1+η (
1

µ(Ñ)

)α(1+η)+β(1−σ)

*
,

1 − ν
µ(Ñ)

φ
+
-

1−ν+η(1−α)+σβ


1
β



1
η+σ

(184)

H.3 Parametric Labor Responses

dL
dC

� − σ
1 + η − β

L
C

< 0 (185)

dL
dK

�
α

1 + η − β
L
K

> 0 (186)

dL
dN

�
1 − ν − εµN

1 + η − β
L
N

> 0 (187)

∂L
∂A

�
1

1 + η − β
L
A

> 0 (188)

and the total effect of technology on labor is

dL
dA

�

(
L

1 + η − β
) (
− σ

C
dC
dA

+
α
K

dK
dA

+
1 − ν − εµN

N
dN
dA

+
1
A

)
(189)
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