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Abstract
We define a disastrous default as the default of a systemic entity, which has a negative effect

on the economy and is contagious. Bringing macroeconomic structure to a no-arbitrage asset-
pricing framework, we exploit prices of disaster-exposed assets (credit and equity derivatives)
to extract information on the expected (i) influence of a disastrous default on consumption and
(ii) probability of a financial meltdown. We find that the returns of disaster-exposed assets
are consistent with a systemic default being followed by a 3% decrease in consumption. The
recessionary influence of disastrous defaults implies that financial instruments whose payoffs
are exposed to such credit events carry substantial risk premiums. We also produce systemic
risk indicators based on the probability of observing a certain number of systemic defaults or
a sharp drop of consumption.
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Introduction

1 Introduction

Since the seminal contribution of Rietz (1988), studies have shown that disaster risk, defined as

a sudden and dramatic decrease in output and consumption, helps in solving several asset pricing

puzzles (e.g. Barro, 2006; Gabaix, 2012; Gourio, 2013). In these studies, disasters are typically

modeled as exogenous events that cause dramatic increases in the default probabilities of bond

issuers (or dramatic decreases in the asset values of firms). However, recent events suggest that

the default of a systemic entity per se may very well constitute a disaster in itself. Indeed, since its

inception, the largest drop in the University of Michigan Consumer Sentiment index took place in

September 2008, the month when Lehman Brothers went bankrupt. By the same token, the exis-

tence of systemic entities is at the core of novel regulations on Systemically Important Financial

Institutions – SIFIs (International Monetary Fund, 2010; Basel Committee on Banking Supervi-

sion, 2013; Battiston et al., 2016; Kelly et al., 2016; Brownlees and Engle, 2017).

In this paper, we propose an asset pricing framework where the default of some entities –

called systemic – may have disastrous economic effects. In the model, the default of each systemic

entity can affect consumption; moreover such an event can be the source of default cascades.1

When they materialize, new defaults are likely to reinforce the initial drop in consumption and

to contribute to further defaults. The model therefore accommodates amplification mechanisms

(Allen and Gale, 2000; Stiglitz, 2011). In this context, financial instruments that are exposed to the

default of systemic entities are expected to command substantial risk premiums; the latter being

defined as the component of prices that would not exist if agents’ were risk-neutral.

To our knowledge, the present study constitutes the first attempt to measure the macroeconomic

influence of contagious corporate defaults. This information is extracted from the joint dynamics

of consumption and of the prices of disaster-exposed market instruments. The model tractability,

which is instrumental for our study, hinges on the “top-down” approach used to model the defaults

of systemic entities. Top-down credit-risk models focus on default counting processes; in contrast

to the “bottom-up” approach that considers default processes of individual firms as the model

1Das et al. (2007) find that default clustering cannot be explained only by the firms’ joint exposure to observable
systematic factors. In a recent paper, Azizpour et al. (2018) provide strong evidence for the fact that contagion, through
which the default of one firm has a direct impact on the health of other firms, is a significant clustering source.
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primitives. While the default indicators of all contagious firms have to be included in the state

vector to account for contagion in the bottom-up approach, keeping track of the number of systemic

defaults is sufficient in top-down models. The direct modeling of the default counting process

allows to easily accommodate two important phenomena: (i) contagion, which simply amounts to

making the default counting process self-excited (e.g. Giesecke and Kim, 2011; Giesecke et al.,

2011), and (ii) the recessionary influence of defaults, by making consumption growth depend on

the number of systemic defaults. These two features are not present in the bottom-up frameworks

proposed by Collin-Dufresne et al. (2012), Christoffersen et al. (2017), or Seo and Wachter (2018).

Moreover, contrary to the present framework, bottom-up-based studies have to rely on computer-

demanding simulations to price credit derivatives whose payoffs depend on the number of defaults,

making their estimation particularly challenging.2

We estimate our model by exploiting market data on two types of financial instruments that

are directly exposed to systemic risk: tranches of synthetic Collateralized Debt Obligations and

far-out-of-the-money put options written on equity indexes. In synthetic CDO transactions, the

protection buyer receives payments when a pre-specified amount of credit losses in the reference

portfolio has been reached. Losses are allocated first to the lowest tranche, known as the equity

tranche, and then to successively prioritized tranches (mezzanine tranches, followed by senior

tranches). Therefore, senior tranches provide non-null payoffs to the protection buyer only once a

sufficiently large number of entities in the underlying portfolio have defaulted. As a result, market

prices of senior tranches reflect investors’ expectations regarding catastrophic events (Coval et al.,

2007; Longstaff and Rajan, 2008; Collin-Dufresne et al., 2012). Even the senior tranches of CDOs

written on a portfolio of investment grade firms display non-negligible prices. This suggests that

investors allocate a non-zero probability to events of unseen proportions. The second type of

financial instruments, far-out-of-the-money put options, deliver payoffs when the underlying equity

index experiences crashes. Typically, if the strike price is equal to 70% of the current value of the

equity index, then this option yields a strictly positive payoff when the equity index falls by 30%

2Bai et al. (2015) propose a bottom-up framework allowing for contagion and systemic entities – i.e. entities whose
defaults affect consumption. These authors focus on the one-period returns of firms asset values. Their empirical
analysis does not involve multi-period returns of financial instruments whose payoffs depend on the defaults of several
firms, which would be challenging in the context of their framework.
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between the inception and the maturity date of the contract. Therefore, such equity options also

convey information regarding the market perception of systemic risk (Santa-Clara and Yan, 2010;

Backus et al., 2011).

The empirical application, which is conducted on euro-area data spanning the period from Jan-

uary 2006 to September 2017, demonstrates the ability of our model to capture a substantial share

of the joint fluctuations of consumption growth, stock returns and stock and credit derivatives, both

in tranquil and stressed periods.3 Specifically, our estimation involves prices of derivatives written

on (i) the EURO STOXX 50 index, one of the main benchmarks of European equity markets, and

(ii) the credit portfolio underlying the iTraxx Europe main index, including synthetic CDOs of dif-

ferent maturities and seniority levels. Our estimation procedure assigns all 125 constituent entities

of the iTraxx index – the most liquid European investment grade credits – as systemic.

In the spirit of Backus et al. (2011), we deduce estimates of the influence of systemic defaults

on consumption. Our results suggest that the default of a systemic entity is expected to be followed

by a 3% decrease in consumption within two years, taking contagion effects into account. Let us

provide some intuition as to why this influence can be inferred from our estimation. Our equilib-

rium model provides some structure regarding risk premiums; specifically, once the relationship

between the payoffs of a given asset and the factors affecting consumption has been specified, the

model predicts the size of risk premiums asked by investors to carry this asset. Now, the payoffs of

a CDS written on a systemic entity critically depend on the default status of this entity. As a result,

through the lens of the model, the potential influence of a “systemic default” on consumption can

be inferred from the size of credit risk premiums embedded in a CDS spread written on a systemic

entity.

We further exploit our estimated model to derive two systemic risk indicators. The first indi-

cator is defined as the probability of observing a certain number of systemic defaults over specific

horizons.4 The resulting systemic indicator reaches its highest levels in late 2008, after the Lehman

3Hence, our results contribute to the growing literature investigating the links between stock and fixed-income
prices (see e.g. Bekaert et al., 2010; Lustig et al., 2013; Koijen et al., 2017; Campbell et al., 2017).

4Using prices of far-out-of-the-money put options to infer disaster probabilities dates back to Bates (1991). This
approach has been applied recently by Backus et al. (2011), Bollerslev and Todorov (2011), Barro and Liao (2016),
Siriwardane (2016) and Seo and Wachter (2018), among others. For a discussion regarding the difficulty in measuring
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bankruptcy and in late 2011, when the European sovereign crisis was at its peak. On these two

dates, the probabilities of having at least 10 iTraxx constituents defaulting within two years were

of 7% and 6%, respectively. The second indicator is defined as the probability of consumption

displaying a sharp drop in the next year. In line with the first indicator, these probabilities reached

their maximum levels at the time of the Lehman bankruptcy and at the height of the European

sovereign crisis. On these two dates, the probabilities of consumption dropping by more than 10%

in the next year were of 6% and 5%, respectively.

Moreover, our findings point to the existence of substantial credit risk premiums in the credit

derivatives written on systemic entities. In particular, the results suggest that about two thirds of

10-year Credit Default Swaps (CDSs) spreads written on systemic entities correspond to credit

risk premiums. In other words, if agents were not risk-averse, these spreads would be three times

lower. In line with previous studies (Brigo et al., 2009; Azizpour et al., 2011; Giesecke and Kim,

2011), we find that an overwhelming share of the prices of the most senior tranches corresponds to

risk premiums.

We also analyze the pricing of credit derivatives written on entities that are not systemic. Non-

systemic entities are defined as entities: (i) whose default does not cause other defaults, and (ii) that

have no macroeconomic impact. These non-systemic entities may however be exposed to systemic

defaults – through contagion effects – and/or to other macroeconomic variables. We show that,

for a fixed probability of default, the higher the exposure of these entities to systemic defaults, the

higher the spreads of CDSs written on these (non-systemic) entities.

The remainder of this paper is organized as follows. Section 2 presents the general framework

and derives associated pricing formulas. Section 3 describes the data and Section 4 documents

the estimation approach. Section 5 explores the asset pricing and macroeconomic implications

of systemic defaults. Section 6 concludes. The derivation of pricing formulas are gathered in

appendices.

systemic risk, refer to Hansen (2013).
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2 Model

The present model, which builds on Gouriéroux et al. (2014), falls in the category of “top-down”

models, which focus on default counting (or loss) processes (e.g. Azizpour et al., 2011; Giesecke

et al., 2011). These models contrast the “bottom-up” approach that considers default processes of

individual firms as the model primitives (e.g. Lando, 1998; Duffie and Singleton, 1999; Duffie and

Gârleanu, 2001).5

2.1 Credit segments

We consider J homogeneous segments of defaultable entities. For any j, the I j entities of segment j

share the same credit characteristics.

Let N j,t be the number of segment- j entities in default at date t and Nt be the vector Nt =

[N1,t , . . . ,NJ,t ]
′. We denote by n j,t = N j,t−N j,t−1 the number of defaults occurring in segment j on

date t. With obvious notations, we have nt = Nt−Nt−1.

The information on current and past values of any process kt is denoted by kt = {kt ,kt−1, . . .}.

Conditional on N0 = 0, the information contained in the information set n j,t (respectively nt) is

equivalent to that in N j,t (resp. Nt).

The first two segments of entities gather large firms supposed to be systemic. We denote by

Ns
t = N1,t +N2,t the cumulated number of systemic defaults and by ns

t = n1,t + n2,t the number

of systemic defaults occurring on date t. The only distinction between these first two segments

is that the first one contains the constituents of a credit index used as the reference portfolio for

traded credit derivatives, whose prices are used to calibrate the model. Having a single segment of

systemic entities would be restrictive because it would mean that this specific credit index, namely

the iTraxx Europe main, covers all systemic entities in our economy, which may not be realistic.

The other segments, j ≥ 3, gather non-systemic firms, that can be thought of as small firms.

5The “top-down” approach has been shown to satisfactorily capture the existence of default clustering (e.g. Brigo
et al., 2007; Errais et al., 2010).
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2.2 Default-count processes

We assume that defaults are caused by two exogenous and non-negative factors that we denote by

xt and yt , which allows to distinguish between longer-run and shorter-run fluctuations of aggregate

credit risk. In combination, these factors may summarize business cycle fluctuations. Without

loss of generality, we impose E(xt) = E(yt) = 1. Appendix A.1 proposes a specification based on

vector auto-regressive gamma processes (see Gouriéroux and Jasiak, 2006; Monfort et al., 2017).

These processes are Markovian, with gamma-type transition distributions, and feature conditional

heteroscedasticity. In particular, they are such that:

 xt−1 = ρx(xt−1−1)+σx,tεx,t ,

yt− xt = ρy(yt−1− xt−1)+σy,tεy,t ,
(1)

where εt = [εx,t ,εy,t ]
′ is a martingale difference sequence with unit-variance components and where

[σ2
x,t ,σ

2
y,t ]
′ is affine in [xt−1,yt−1]

′.

Intuitively, if 0 < ρy < ρx < 1, the autonomous factor xt is more persistent than yt − xt and, if

ρx is large, xt can be seen as the low-frequency component of yt . The residual component yt − xt ,

which has a marginal zero expectation, can be interpreted as the higher-frequency component of

yt . The higher yt , the higher the probability of default of the different entities. Formally, for any

segment j, we assume that n j,t is an integer process with stochastic intensity, defined by:

n j,t+1|xt+1,yt+1,Nt ∼ P(β jyt+1 + c jns
t ), (2)

where β j and c j are non-negative parameters, where ns
t is the total number of systemic defaults

taking place on date t and P denotes the Poisson distribution. If c j > 0, the occurrence of systemic

defaults on date t increases the conditional probability of having defaults in segment j on the next

date. Thus, systemic defaults are contagious when c j > 0 for some j.6,7 By contrast, the defaults

of non-systemic segments are not contagious since, for j > 2, n j,t does not appear in the parameter

6In particular, if c j > 0 for j ∈ {1,2} (systemic segments), then systemic defaults are “self-excited” (Aït-Sahalia
et al., 2014).

7Systemic defaults are contagious, or “infectious”, using Davis and Lo (2001)’s terminology.
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of the Poisson distribution in eq. (2).

For parsimony, we consider that entities from the two systemic segments are alike, the only

difference being that those from segment 1 are the constituents of traded credit indexes. Accord-

ingly, we assume that c1 = c2 and that β1 = β2. That is, assuming also that I1 = I2, the conditional

default probabilities of a systemic entity, be it of segment 1 or 2, are the same.

Eq. (2) specifies a default process N j,t that does not necessarily terminate at I j, the number

of entities in segment j. As noted by Azizpour et al. (2011), this feature is, however, innocuous

because for the relatively large portfolios of interest, the probability of N j,t exceeding I j during

standard contract terms is small for our sample.8,9

2.3 Consumption growth process

We assume that systemic defaults have a negative impact on the log growth rate of per capita

consumption, denoted by ∆ct = log(Ct/Ct−1). To have this, a possibility is to make ∆ct directly

depend on the number of systemic defaults ns
t−1. However, this would have the unrealistic implica-

tion that all systemic defaults have the same deterministic effect on consumption growth. Instead,

we assume that ∆ct depends on a factor wt , that depends itself on systemic defaults according to:

wt |xt ,yt ,Nt ∼ γ0(ξwns
t−1,µw), (3)

where the zero-gamma distribution γ0 is a distribution featuring a point mass at zero (Monfort et al.,

2017). Specifically, when ns
t−1 > 0, wt is drawn from a gamma distribution whose scale parameter

is µw and whose shape parameter is drawn from P(ξwns
t−1). When the shape parameter is zero,

we have wt ≡ 0. Therefore, in this context, the conditional probability that wt = 0 is exp(−ξwns
t−1).

In particular, we have wt = 0 as long as there has been no systemic defaults in the previous period.

For identification, we impose E(wt) = 1, which is obtained by setting µw = 1/(ξwE(ns
t )).

8Size effects are captured by parameters β j and c j. In our empirical study, the segment sizes we use are 50 (EURO
STOXX 50) and 125 (iTraxx index), see Subsection 3.1.

9The fact that N j,t does not terminate at I j is important if one wants to use this type of model to produce long-term
forecasts; it implicitly entails a form of replacement mechanism of systemic entities.
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The consumption growth process is then specified as follows:

∆ct = µc,0 +µc,xxt +µc,yyt +µc,wwt +σcε
c
t ε

c
t ∼ i.i.d.N (0,1). (4)

That is, consumption growth is affected by: the business-cycle components xt and yt , the

disaster-like component wt and a volatile normally-distributed shock εc
t .

As is standard in this literature, we do not account for inflation in our model. That is, we

assume that the inflation rate is constant, or independent from (xt ,yt ,wt ,Nt).

Panel (a) of Figure 1 shows the resulting causal scheme. In our model, the defaults of non-

systemic segments ( j > 2) have no causal impact on consumption or on defaults in other segments.

As a result, non-systemic segments are not used in the model estimation. We will however use

segment 3 in Section 5 to study the implications of the model for the pricing of credit derivatives

written on non-systemic entities.

Panel (b) of Figure 1 represents the type of scheme prevailing in standard disaster-risk models.

In these models, disasters take the form of jumps that simultaneously trigger a fall in consumption

and sharp increases in default probabilities. By contrast, in our context, the defaults themselves

cause drops in consumption. Because this mechanism is the focus of the present study, we do not

incorporate feedback effects from consumption to factors xt and yt .

2.4 State vector and agents’ information sets

On date t, the information set of the representative agent is Ωt = {xt ,yt ,wt ,ct ,Nt}. It includes

the current and past observations of all default counts and underlying factors. In the following,

the operator Et denotes the expectation conditional on the information available at time t, i.e.

Et(•) = E(•|Ωt).

In the following, we focus on the state vector Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′. As shown below, the

payoffs of the financial instruments we consider, as well as their values, are functions of Xt (as

a result, the information contained in the underlying factor values can be recovered from the ob-

served derivative prices). The tractability of our approach results from the fact that Xt is an affine

9
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Figure 1: Causal scheme

Panel (a)
Present model

Systemic entities

ytxt

n1,t

iTraxx

n2,t

n3,t

Non systemic
entities

wt ∆ct

Consumption
growth

Panel (b)
Standard disaster-risk model

xt , yt wt (jump)

n1,t n2,t n3,t ∆ct

Panel (a) displays the causal scheme underlying our model. Panel (b) represents the scheme prevailing in standard
disaster-risk models. Arrows represent Granger-causal relationships.

process. The log conditional Laplace transform, denoted by ψ(v,Xt) and defined by:

Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)),

is affine in Xt . Formally, there exist functions ψ0 and ψ1 such that:

ψ(v,Xt) = ψ0(v)+ψ1(v)′Xt , (5)

for the values of v that are such that Et (exp(v′Xt+1)) exists. Functions ψ0 and ψ1 are made ex-

plicit in Appendix A.2 (eqs. a.2 and a.3). As is well-known, the combination of affine processes

and an exponential affine stochastic discount factor results in closed-form, or quasi closed-form,

expressions for the prices of a wide range of financial instruments (Duffie et al., 2002).
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2.5 Preferences, stochastic discount factor and risk-neutral dynamics

The preferences of the representative agent are of the Epstein and Zin (1989) type, with a unit

elasticity of intertemporal substitution (EIS).10 Specifically, the time-t utility of a consumption

stream (Ct) is recursively defined by:

ut = (1−δ )ct +
δ

1− γ
log(Et exp [(1− γ)ut+1]) , (6)

where ct denotes the logarithm of the agent’s consumption level Ct , δ the time discount factor and γ

the risk aversion parameter.11 Exploiting the affine property of the state vector Xt , it can be shown

that the short-term stochastic discount factor (s.d.f.) at date t, denoted by Mt,t+1, then admits the

following exponential affine representation:

Mt,t+1 = exp
[
−(η0 +η

′
1Xt)+π

′Xt+1−ψ(π,Xt)−ηcε
c
t −

1
2

η
2
c

]
, (7)

where scalars η0 and ηc, and vectors π and η1 depend on previously-introduced model parameters

(see Proposition 2 of Appendix B). Because Et(Mt,t+1) = exp[−(η0 +η ′1Xt)], the short-term risk-

free interest rate rt is affine in Xt and given by:

rt = η0 +η
′
1Xt . (8)

In order to price financial instruments, it is convenient to introduce the risk-neutral probability

measure, denoted by Q. This probability measure is defined with respect to the historical one

through the change of density (dQ/dP)t,t+1, given by:

Mt,t+1

Et(Mt,t+1)
= exp

[
π
′Xt+1−ψ(π,Xt)−ηcε

c
t −

1
2

η
2
c

]
.

10Using a unit EIS facilitates resolution. Piazzesi and Schneider (2007), or Seo and Wachter (2018), among others,
also work under this assumption of a unit EIS. This value is however slightly below the lower bound of the 90%
confidence interval found by Schorfheide et al. (2018).

11Eq. (6) results from a first-order Taylor expansion around ρ = 1 of the general Epstein and Zin (1989) recursive

utility defined by: ut =
1

1−ρ
log
(
(1−δ )C1−ρ

t +δ (Et [exp{(1− γ)ut+1}])
1−ρ

1−γ

)
, where ρ is the inverse of the EIS.
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Appendix B (Proposition 3) shows that Xt is also affine under Q; more precisely it shows that the

Q-Laplace transform of Xt is given by:

exp
(

ψ
Q(v,Xt)

)
≡ EQ

t
(
exp(v′Xt+1)

)
= exp

(
ψ

Q
0 (v)+ψ

Q
1 (v)′Xt

)
,

with  ψ
Q
0 (v) = ψ0(v+π)−ψ0(π),

ψ
Q
1 (v) = ψ1(v+π)−ψ1(π).

The fact that Xt is an affine process under Q facilitates the pricing of various assets whose

payoffs depend on future values of Xt . In particular, Appendix C.1 provides closed-form for-

mulas to compute date-t prices of European derivatives with payoffs of the form exp(a′Xt+h),

exp(a′Xt+h)1{b′Xt+h<y}, a′Xt+h, or a′Xt+h1{b′Xt+h<y}, settled on date t +h. These formulas are key

building blocks to price specific financial instruments.

2.6 Pricing credit and equity derivatives

2.6.1 Pricing credit index swaps

A credit index swap allows an investor to either buy or sell protection on a credit index, which

is a basket of reference entities. There are two main families of credit indexes, which serve as

reference points for CDS markets, that are the Dow Jones CDX and iTraxx indexes. The CDX

North American Investment Grade index and the iTraxx Europe main index are each comprised

of 125 equally-weighted underlying credits (see Section 3 for more details on the iTraxx Europe

main index, which is the one used in our application).

In a credit index swap transaction, a protection seller agrees to pay all default losses in the

index in return for a fixed periodic spread SCI
t,h/q paid on the total notional of obligors remaining

in the index over a period of h years, where q is the number of time periods per year. Should there

be no credit event, the protection buyer pays a regular spread until maturity. Upon default of one

of the reference entities, the protection seller provides the buyer with the amount that the latter

would have lost if she had held the index bond portfolio. For instance, for a $100,000 position in a
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20-name index, with a recovery rate of 50%, the amount would be $2,500 (= 50%×100,000/20).

Following this default, the trade continues with the notional amount reduced by the weight of the

defaulted credit. In the previous example, the new notional would be $95,000; the number of

reference entities in the index would be reduced to the remaining (non-defaulted) 19 entities.

In our application, we consider that the names in the credit index coincide with segment 1. The

payoffs therefore critically depend on N1,t . The spread SCI
t,h is determined by equalizing the date-t

values of the protection leg and of the premium leg, that is:

EQ
t

{
qh

∑
k=1

Λt,t+k(1−RR)
N1,t+k−N1,t+k−1

I1

}
︸ ︷︷ ︸

Protection leg

=
SCI

t,h

q
EQ

t

{
qh

∑
k=1

Λt,t+k
I1−N1,t+k

I1

}
︸ ︷︷ ︸

Premium leg

, (9)

where I1 is the number of entities in segment 1, i.e. the number of names in the index, where RR is

the contractual recovery rate, assumed independent of time, and where:

Λt,t+k = exp(−rt− rt+1−·· ·− rt+k−1), (10)

rt being the risk-free short-term interest rate between periods t and t +1.

Hence, credit index swap spreads result from the knowledge of conditional expectations of the

form EQ
t (Λt,t+kN1,t+k) and EQ

t (Λt,t+kN1,t+k−1), whose computation is addressed in Corollary 1 of

Appendix C.1.

Online Appendix O.4 shows that the spread on a CDS written on any entity of segment 1 is also

given by eq. (9).

2.6.2 Pricing synthetic Collateralized Debt Obligations (CDOs)

Collateralized Debt Obligations (CDOs), or credit tranches, allow an investor to get a specified

exposure to the credit risk of the underlying reference portfolio, or credit index, while in return
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receiving periodic coupon payments.12 Losses due to credit events in the underlying portfolio

are allocated first to the lowest tranche, known as the equity tranche, and then to successively

prioritized tranches (junior tranches, mezzanine tranches, followed by senior tranches).

The risk of a tranche is determined by attachment and detachment points. The attachment

point, denoted by a, determines the subordination of a tranche. The detachment point, denoted

by b, b > a, determines the point beyond which the tranche has lost its complete notional. The

equity tranche takes the first losses on the portfolio, from a1 = 0 up to b1. When the portfolio has

accumulated losses exceeding the fraction b1 of notional, the next tranche, (a2,b2) with a2 = b1,

will incur losses from any additional defaults up to b2, and so on.

Let us detail the cash-flows induced by an (a,b) credit tranche in the context of the reference

portfolio made of segment-1 entities, that are the iTraxx ones in our study. Consider a protection

buyer and a protection seller who meet at date t. Their negotiation results in a spread ST DS
t,h (a,b),

which is the quote associated with this credit tranche at date t, the maturity date of this derivative

product being t +h. Let us denote by `t the cumulative loss, that is:

`t = (1−RR)
N1,t

I1
.

From dates t +1 to t +h, cash-flows are exchanged between the two parties unless the cumulative

losses `t+k (for k = 1, . . . ,h) have exceeded the detachment point b. Specifically, at date t+k, these

cash-flows are the following:

• If cumulative losses `t+k have not reached the attachment point a: (i) there is no cash-flow

paid by the protection seller and (ii) the protection buyer pays the full premium ST DS
t,h (a,b)/q.

• If cumulative losses `t+k exceed the attachment point a, but remain lower than the detach-

ment point b: (i) the protection seller provides the protection buyer with an amount equal

to the fraction of the tranche consumed by new losses between t + k− 1 and t + k, that is

12The credit-tranche market consists of an actively traded segment and an illiquid “buy-and-hold” segment (Sche-
icher, 2008). In the actively-traded segment, the underlying credit portfolio is based on the standardized portfolio of
a credit index such as the iTraxx or the CDX index. The less-actively-traded segment of the credit-tranche market
consists of tailor-made tranches of Collateralized Debt Obligations (CDOs) in which various loans are bundled.
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(`t+k− `t+k−1)/(b− a), and (ii) the protection buyer pays a premium equal to the multi-

plication of the full premium ST DS
t,h (a,b)/q by the fraction of the tranche that has not been

consumed at date t + k, that is (b− `t+k)/(b−a).

The spread ST DS
t,h (a,b)/q is such that the protection and premium legs have the same value at date

t, that is:13

EQ
t

{
qh

∑
k=1

1
b−a

Λt,t+k(min(`t+k,b)−max(`t+k−1,a))1{a<`t+k}1{`t+k−1≤b}

}
︸ ︷︷ ︸

Protection leg

≈ EQ
t

{
qh

∑
k=1

Λt,t+k
`t+k− `t+k−1

b−a
1{a<`t+k≤b}

}
︸ ︷︷ ︸

Protection leg

= UT DS
t,h (a,b)+

ST DS
t,h (a,b)

q
EQ

t

{
qh

∑
k=1

Λt,t+k

(
1{`t+k≤a}+

b− `t+k

b−a
1{a<`t+k≤b}

)}
︸ ︷︷ ︸

Premium leg

, (11)

where UT DS
t,h (a,b) is an upfront payment and where Λt,t+k is defined in eq. (10).14 Credit tranches

are either quoted in terms of spreads ST DS
t,h (a,b), or in terms of up-front payments UT DS

t,h (a,b).

Typically, in the former case, the up-front payment is fixed, and vice versa.

Appendix C.2 shows that by expanding both sides of eq. (11), computing ST DS
t,h (a,b) – or, equiv-

alently, UT DS
t,h (a,b) – amounts to calculating date-t prices of payoffs of the forms: 1{N1,t+k<z},

N1,t+k1{N1,t+k <z}, and N1,t+k−11{N1,t+k<z}, these payoffs being settled at date t + k. The computa-

tion of such prices is addressed in Corollaries 2 and 3 (Appendix C.1).

2.6.3 Pricing equity derivatives

The price Pt of a stock at date t can be deduced from the series of future dividends Dt+h, h≥ 1, as:

13The smaller `t+k− `t+k−1 compared to b− a, the better the approximation made on the protection leg. Whereas
this approximation overstates the payoff on those dates where `t+k−1 < a < `t+k (because it mistakenly attributes
a− `t+k−1 to the payoff), it understates the payoff when `t+k−1 < b < `t+k (because b− `t+k−1 is then mistakenly
excluded from it).

14See e.g. O’Kane and Sen (2003), D’Amato and Gyntelberg (2005), or Morgan Stanley (2011) for an analysis of
upfront versus running spread quoting conventions.
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Pt =
∞

∑
h=1

EQ
t (Λt,t+hDt+h).

Let us assume that, as consumption growth, the dividend log growth rate gd,t = log(Dt/Dt−1)

is affine in [xt ,yt ,wt ]
′:

gd,t = µd,0 +µd,xxt +µd,yyt +µd,wwt . (12)

Proposition 6 (Appendix C.3) provides an approximated solution for the stock returns in the

general case where the log growth rate of dividends is affine in Xt . As in Bansal and Yaron (2004),

this approximated solution is based on the Campbell and Shiller (1988) linearization of stock

returns around the average of the log price-dividend ratio τt = log(Pt/Dt). In the solution, τt is

expressed as an affine function of Xt .

The payoffs of equity derivatives depend on Pt . The dynamics of Pt is deduced from the dy-

namics of the ex-dividend return r∗t+1 = log(Pt+1/Pt). This return is given by:

r∗t+1 = log
(

Pt+1

Dt+1
× Dt

Pt
× Dt+1

Dt

)
= τt+1− τt +gd,t+1, (13)

which is affine in [X ′t+1,X
′
t ]
′. We therefore have, for any horizon h:

Pt+h = Pt exp
(
r∗t+1 + · · ·+ r∗t+h

)
(14)

= Pt exp
(
τt+h− τt +gd,t+1 +gd,t+2 + · · ·+gd,t+h

)
. (15)

Let us consider the price of a European put option of maturity h and strike K. This price is

given by EQ
t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
. Using eq. (14), we obtain:

EQ
t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
= KEQ

t

(
Λt,t+h1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
−PtEQ

t

(
Λt,t+h exp(r∗t+1 + · · ·+ r∗t+h)1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
. (16)

Appendix C.4 provides details about the computation of the two conditional expectations ap-
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pearing on the right-hand side of eq. (16).

3 Data

The data cover both financial and macroeconomic series spanning the period from January 2006

to September 2017, at a bi-monthly frequency. On the financial side, we use credit index swap

spreads and prices of tranches associated with the iTraxx Europe main index. Furthermore, the

financial data include prices of far-out-of-the-money (far-OTM) equity put options written on the

EURO STOXX 50, which is one of the most important benchmarks of European equity markets.

On the macroeconomic front, data consist of quarterly real private consumption, taken from the

Area-Wide Model (AWM) database (Fagan et al., 2001). A cubic spline is applied to the quarterly

series in order to obtain one at a bi-monthly frequency.15

In what follows, we detail the financial data and provide, in particular, arguments for the sys-

temic nature of iTraxx constituents (Subsection 3.2) and their stability across time (Subsection 3.3).

3.1 Financial data description

3.1.1 Credit index and tranche prices (iTraxx)

To estimate the model, we employ data based on the iTraxx Europe main index, a euro-denominated

index involving 125 large European firms whose credit default swaps are actively traded. iTraxx

indexes roll every six month – forming series. That is, every six months, a new series of the in-

dex is created with updated constituents. Derivatives written on previous series continue trading,

although liquidity is concentrated on options written on the on-the-run series (see Markit, 2014).

The roll consists of a series of steps which are administered by Markit, a financial services

information company that owns and compiles CDX and iTraxx indexes. For the Markit iTraxx

Europe indexes, liquidity lists are formed from the trading volumes from the Depository Trust and

Clearing Corporation (DTCC) Trade Information Warehouse.16 Markit then applies index rules
15As shown on Panel (b) of Figure 4 (compare the black solid line and the gray dotted line), this smoothing only

removes a fairly small part of the variance of consumption growth.
16http://www.dtcc.com/derivatives-services/trade-information-warehouse.
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to determine the index constituents among the most liquid names (see Markit, 2016). For iTraxx

Europe main (the index used in this study), the final Index comprises 30 Autos & Industrials, 30

Consumers, 20 Energy, 20 Telecommunications, Media and Technology (TMTs) and 25 Finan-

cials.

Constituents of the iTraxx Europe main index must have an investment grade rating. That

is, to be included in the list of constituents, entities have to be rated BBB-/Baa3/BBB- (Fitch/-

Moody’s/S&P), or higher. On average, over the ongoing life of the iTraxx index (from series 1 to

30), the median rating of its constituents is BBB+ at the S&P rating – which corresponds to a Baa1

Moodys’ rating.

We extract spreads of iTraxx indexes from Thomson Datastream. These spreads correspond

to maturities of 3, 5, 7 and 10 years. We also use iTraxx tranche prices that come from Markit’s

website.17 For each maturity, we use prices associated with the following tranches: 0%-3%, 3%-

6%, 6%-9%, 9%-12% and 12%-22%. We do not use prices associated with the super-senior tranche

(22%-100%) as well as prices associated with the 10-year maturity given the very low liquidity of

these contracts. Note also that, for liquidity reasons, our Markit data do not cover all dates in our

sample. In particular, we do not have tranche prices before January 2007 and after March 2013.

Because each index roll features fixed maturity dates, market prices are not of the “constant-

maturity” type. To deal with this issue, for each considered maturity, for (i) each date and (ii) each

pair of attachment/detachment points, we look for the tranche price whose residual maturity is the

closest to the considered one. If the residual maturity of the resulting tranche is not in a ±1 year

window around the targeted maturity, no price is reported.

3.1.2 Equity options (EURO STOXX 50)

Equity put options are far out-of-the-money options written on the EURO STOXX 50 index. We

consider two maturities, 6 and 12 months, and strikes equal to 70% of the current value of the index.

These options protect against larger-than-30% falls in the equity index. That is, the payoffs of these

17http://www.creditfixings.com/CreditEventAuctions/itraxx.jsp. For each date, maturity and
tranche, we convert all quotes into an equivalent running spread with no upfront payment by using the risky dura-
tion approach (see e.g. O’Kane and Sen, 2003; D’Amato and Gyntelberg, 2005; Morgan Stanley, 2011).
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options become strictly positive in case of a fall of the index by more than 30%. Such option prices

are not directly available on Thomson Datastream; option prices reported on those database are for

contracts with standardized maturity dates and strikes. We compute the prices of our out-of-money

options by applying interpolation splines on available data, in both the time and strike (1000, 1500,

2000, 2500, 3000, 3500, 4000 euros) dimensions. Following market convention, we convert put

option prices into implied volatilities using the Black-Scholes formula and Euribor swap rates as

the risk-free rate.

3.2 The systemic nature of iTraxx entities

In this subsection, we document that iTraxx constituents represent substantial shares of European

economies – along different dimensions. This supports the idea that these entities are large enough

for their defaults to have economy-wide effects, which supports our use of the iTraxx index to

proxy for systemic firms.

Table 1 reports information, collected on Thomson Reuters Eikon, on the 125 entities of series

30 of the iTraxx Europe main index (series 30 was issued on September 20, 2018). Specifically, the

Table reports the different countries whose firms are included in the iTraxx’s series 30, their number

of iTraxx firms (as of September 20, 2018) and their respective market capitalization, number of

employees, long-term debt and total debt, as a percentage of the total listed firms in a given country.

On average, across the fifteen different countries, iTraxx entities represent about 27% of the market

capitalization of a country; with the Netherlands featuring the highest proportion of total market

capitalization amounting to 62%. By the same token, the average number of employees of iTraxx

entities represents about 22% of the total number of employees hired by the listed firms of a given

country; with Germany having the largest proportion (44%). Last, iTraxx entities represent, on

average, about 42% of the long-term debt and total debt of all the listed firms of a country.

Aggregating these metrics across all 125 entities amounts to about 5 trillion euros of market

capitalization, 12.5 million employees, 3.8 trillion euros of long-term debt and 5.5 trillion euros

of total debt.18 These descriptive statistics suggest that iTraxx entities are very large and may

18To provide a sense of the order of magnitude of these figures, note that the aggregate size of the market capital-

19



Data

Table 1: Systemic nature of iTraxx entities

Country Nb. iTraxx entities Market capitalization Nb. employees Long-term debt Total debt

Austria 1 3.88 3.44 3.45 3.27
Belgium 2 45.23 36.85 44.31 38.41
Denmark 1 3.64 2.29 65.19 70.08
Finland 1 3.46 1.37 3.00 2.36
France 29 50.25 41.78 71.64 64.48
Germany 21 41.10 43.70 65.29 69.27
Italy 7 40.55 31.08 61.16 60.08
Luxembourg 2 11.56 27.26 13.29 13.93
Netherlands 11 62.14 41.04 77.07 74.63
Norway 2 31.71 10.98 4.72 5.39
Portugal 1 23.61 – – –
Spain 6 8.07 26.73 68.43 64.76
Sweden 3 8.50 9.54 4.70 5.15
Switzerland 7 29.23 30.92 56.85 62.94
United Kingdom 31 37.43 27.63 51.22 55.06

This table reports the different countries whose firms are included in the iTraxx’s series 30, their number of iTraxx
firms (as of September 20, 2018) and their respective market capitalization, number of employees, long-term debt and
total debt, as a percentage of the total listed firms in a given country. All figures are in percentages. The data on iTraxx
firms and on all listed firms per country is collected from Thomson Reuters Eikon. As of the time of the analysis,
Portugal’s only iTraxx firm (EDP Finance) does not disclose its number of employees, long-term debt and total debt.

have a direct impact on the health of other firms, via their financial, legal or business relationships

(echoing the arguments of Azizpour et al., 2018). Indeed, contagion is not limited to the financial

sector. This is supported by the fact that General Motors and Chrysler received 20% of the funds

of the Troubled Asset Relief Program (launched in 2008), amounting to about 80 billion dollars.

The arguments used at the time were that millions of jobs would be lost and that their default could

trigger the closure of many factories, the liquidation of suppliers and dealerships and the potential

loss of an entire industry.19

3.3 The stability of iTraxx indexes

As mentioned above, iTraxx indexes roll every six months. In this subsection, we want to see

whether the rolling of the index affects the stability of its constituents across time.

ization is about twice as large as the French GDP in 2017, while the aggregate number of employees represents more
than half of the active population of Spain.

19See e.g. https://www.reuters.com/article/autos-bailout-study-idUSL1N0JO0XU20131209.
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Figure 2 reports statistics on the stability of the iTraxx across its entire past history, up to series

30. For comparison, we perform similar statistics on the CDX North American Investment Grade

index (up to series 31). The jth bar depicts the average proportion of constituents that belong to

a given credit default swap index (iTraxx or CDX) series and the one prevailing j semesters later.

For instance, the first (respectively second) bar is obtained by computing the proportion of iTraxx

constituents that belong to the index at 6 months intervals (respectively 12 months intervals).

Figure 2: iTraxx constituents’ stability
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This figure illustrates the stability of the constituents of the iTraxx index (dark gray bars) and the CDX index (light gray
bars). The jth bar depicts the average proportion of constituents that belong to a given credit default swap index (iTraxx
or CDX) series and the one prevailing j semesters later. For instance, the first (respectively second) bar is obtained by
computing the proportion of iTraxx constituents that belong to the index at 6 months intervals (respectively 12 months
intervals). The computations are based on the 30 first iTraxx Europe main index series and on the 31 first CDX North
American Investment Grade series, respectively.

We find that, on average, over the first 30 iTraxx series spanning the last 15 years, about 80%

of the constituents are the same in a given series and the one that is launched three years later.

As shown by the low turnover in Figure 2, iTraxx constituents are fairly stable from one series to

another. Therefore, in spite of the fact that our estimation sample covers several iTraxx indexes,

we consider a single model parametrization (see Section 4).20

20By contrast, Collin-Dufresne et al. (2012) modify their model calibration for each new CDX index (see their
Table 1). This table discloses important changes in the parameter values they obtain from one index to another, which
is at odds with the stability of the index constituents (see Figure 2).
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Given the constituents are relatively stable across series, conducting a similar analysis to that

of Subsection 3.2 on any other series would lead to qualitatively similar results.

4 Estimation

Bringing the model to the data amounts to determining two types of objects: the model parameters

have to be estimated and the latent variables have to be filtered. In order to discipline the estima-

tion, some of the model parameters – in particular the preference parameters – are not estimated,

but are calibrated. Thanks to the tractability of our framework, the estimation of remaining param-

eters and the filtering of unobserved variables are performed jointly by Kalman filter techniques.

This estimation approach could not be employed in frameworks that do not entail closed-form

formulas.21

4.1 Calibrated parameters

The left panel of Table 2 reports the calibrated parameters. Following Seo and Wachter (2018), the

risk aversion parameter γ is set to 3 and the annualized rate of time preference to 1.2%. Because our

model is at a bi-monthly frequency, this rate of time preference translates into δ = (1−1.2%)1/6≈

0.998. As mentioned above (Subsection 2.5), we consider a unit elasticity of intertemporal substi-

tution. Another calibrated moment is the population expectation of consumption growth, that is

set to 1.5% (annualized). The variance of the annual consumption growth rate is set to 5%, which

is roughly consistent with the values given by Barro and Ursua (2011) for the OECD.22 The stan-

dard deviation of the volatile component of consumption growth, that is σc, is set to 0.8%, which

implies that a relatively small share – about 15% – of the annual consumption variance is driven

21On a standard laptop, the computation of the likelihood function – which involves the estimation of the latent
factors – takes about ten seconds. Though this is not a negligible amount of time, it still allows for the numerical
optimization of the likelihood function with respect to a reasonable number of parameters (about ten here). By contrast,
Seo and Wachter (2018) have to employ a 200-cores High Performance Computer (HPC) cluster to evaluate CDX
prices (on a single set of calibrated parameters); this suggests that any form of numerical optimization would be
particularly demanding in the context of their model.

22According to Barro and Ursua (2011, Table 2), the standard deviation of the annual consumption growth rate of
OECD countries has been of 5.7% for a large sample starting at the end of the 19th century and ending in 2009 – and
of 2.9% for a post-world-war-II sample.
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by this volatile component. As in Bansal and Yaron (2004), the log growth rate of real dividends

is given the same marginal expectation as the log growth rate of consumption (1.5%, annualized).

We take a contractual recovery rate RR of 40%, consistently with standard market practice. We

also set the average default rate of the systemic entities to be of 0.3% per year. This is consistent

with historical data on investment-grade entities compiled by Moody’s.23

4.2 State-space model

During the period we consider (2006-2017), there has been no systemic default in the euro area.

On October 22 2009, though, CDS contracts written on the French electronics firm Thomson –

one of the iTraxx constituents – were triggered. However, we do not consider this credit event to

be a systemic event. Indeed, this credit event was not a failure of the firm, but a restructuring of

its debt.24 In the U.S., following the so-called “Big Bang” changes in practices on credit events

(April 8 2009) restructuring was excluded from the list of credit events triggering American CDSs

(see Coudert and Gex, 2010).

Accordingly, we have ns
t = 0 and therefore wt = 0 for all dates t in our sample. Then we can

focus on the filtering of the other factors xt and yt . Let us stress that, in spite of the fact that wt = 0

over our sample, the threat of possibly having wt+k > 0, k > 0, is taken into account by investors

on each date t of the sample. Accordingly, the parameters governing the dynamics of wt , i.e. ξw,

µw, µc,w and µd,w are, in particular, identifiable through observed derivative prices.

Observed variables include credit index swap spreads of different maturities, tranche spreads

and equity put prices. Let us denote by Γt the vector of observed data – that includes financial data

as well as consumption growth – and by θ the vector of model parameters to be estimated. Over

our estimation period, our model predicts that these prices are functions of zt = [xt ,yt ]
′ (and of

wt = 0) and θ . Allowing for measurement errors denoted by εt , the set of measurement equations

23More precisely, this corresponds to the average cumulative issuer-weighted global default rates for Baa-rated firms
on the period 1920-2016 (see Moody’s, 2017, Exhibit 32). On average, over the ongoing life of the iTraxx index (from
series 1 to 30), the median rating of its constituents is BBB+ at the S&P rating – which corresponds to a Baa1 Moodys’
rating.

24The recovery rate was determined through auctions; for the shortest maturity (2.5 years), the recovery rate was of
96.26%.
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reads:

Γt = F(zt ;θ)+ εt , (17)

where the components of εt are mutually and serially independent Gaussian shocks, i.e. εt ∼

i.i.d.N (0,Σε), where Σε is a diagonal matrix.

The transition equation describes the dynamics of zt . Using the formula provided in Ap-

pendix A.1, the dynamics of zt can be expressed as follows:

zt+1 = µz +Φzzt +Σ
1/2
z (zt)ξt+1, (18)

where ξt+1 is a martingale difference sequence that, conditional on Ωt , is zero mean and admits an

identity covariance matrix. Thus, matrix Σz(zt) describes the conditional heteroscedasticity.

Eqs. (17) and (18) constitute the state-space form of our model. We employ the extended

Kalman filter to approximate the log-likelihood function associated with this state-space model.25

By maximizing this function with respect to θ , we obtain estimates of the parameters that have not

been directly calibrated (Subsection 4.1) or that cannot be retrieved from calibrated moments.26 A

final pass of the Kalman algorithm provides us with filtered values of the latent factors zt .

5 Results

5.1 Model fit

Table 2 shows calibrated and estimated parameters. It notably appears that c j parameters ( j ∈

{1,2}) are equal to 0.38, revealing a substantial level of contagion. It implies that an additional

default by one systemic firm on date t leads to an increase in the expected number of systemic

25Derivatives of function F with respect to zt are obtained numerically. In order to reduce the number of parameters
to estimate, the diagonal entries of Σε (variances of the measurement errors) are calibrated in a preliminary step. We
employ the approach of Green and Silverman (1994) and proceed as follows: we apply a smoothing spline to series
of observed prices. Next, we compute the sample variances of the differences between the prices and their smoothed
counterparts. The variances of the measurement equations are set to these values.

26In our framework, this approach notably benefits from the existence of closed-form formulas to compute calibrated
moments (these computations are based on the results shown in Online Appendix O.2).
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default on date t + 1 by 0.76 (2× 0.38) on date t + 1.27 Responses to systemic defaults will

be studied more extensively through impulse response functions in Subsection 5.2. Following

Abel (1999), Collin-Dufresne et al. (2016) and Seo and Wachter (2018), we assume that, up to an

affine transformation – and up to consumption-specific Gaussian disturbances (εc
t in eq. 4) – the

log growth rate of dividends is equal to consumption growth. That is, the parameters µd,x, µd,y

and µd,w pertaining to eq. (12) are proportional to the parameters µc,x, µc,y and µc,w pertaining to

eq. (4). In our setup, this “leverage parameter” χ is equal to 2.5, which is in line with the values

found in Abel (1999), Collin-Dufresne et al. (2016) and Seo and Wachter (2018) (2.74, 2.5 and

2.6, respectively). Moreover, the fact that ρx = 0.988 and ρy = 0.829, with associated half-lives

of 9.6 and 0.6 years, respectively, indicates that the persistence of xt is larger than that of yt − xt .

This is illustrated by Figure 3, which displays the filtered factors xt and yt . This figure shows that

yt is more volatile than xt . In particular, contrary to xt , process yt has been more sensitive to the

post-Lehman crisis (late 2008, early 2009) and to the peak of the euro-area sovereign debt crisis

(late 2011, early 2012).

Figure 3 also shows that the long-run factor xt remained subdued before the euro-area sovereign

debt crisis of 2010-2012. Therefore, the peak reached by yt in late 2008 is mainly due to an increase

in the shorter-run component of yt , i.e. yt − xt . This suggests that, as regards corporate European

credit risk, the post-Lehman crisis was then perceived as a relatively short-lived phenomenon. By

contrast, the European sovereign debt crisis triggered an increase in the long-run component of yt .

This indicates that the market considers that this latter crisis will have a longer-lived impact on

corporate European credit risk. As of the end of the sample, the level of the long-run factor xt is

higher than before 2008. As a consequence, even though the 2017 level of yt is below its late 2008

level, conditional medium to long-run expectations of yt are higher in 2017 than by in late 2008.

Panel (a) of Table 3 reports model-implied population moments. It indicates for instance that

the average excess return for our stock index is of 5.7% and that the maximum Sharpe ratio,

evaluated at the average values of the state vector Xt , has a value of 75%, which is for instance

27Eq. (2) implies that Et(n j,t |xt ,yt ,ns
t−1) = β jyt + c jns

t−1 and therefore that Et
(
n1,t +n2,t |xt ,yt ,ns

t−1 = K +1
)
−

Et
(
n1,t +n2,t |xt ,yt ,ns

t−1 = K
)
= 2c j.
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comparable to the 70% maximum Sharpe ratio value reported in Brennan et al. (2004).28 Panels

(b), (c) and (d) of Table 3 documents the fit resulting from our estimation approach by comparing

the sample averages of observed financial data to their model-implied counterparts. Beyond our

baseline estimates (reported on the second column), the table also includes the estimates of two

counterfactual exercises: (i) without contagion (i.e. setting c1 = c2 = 0 and modifying β1 = β2 such

that the average default probability of systemic entities is the same as in the baseline model) and (ii)

without macroeconomic effects (i.e. setting µc,w = 0). By imposing no contagion, we prevent the

formation of default clusters while maintaining the same probability of default we had under our

baseline estimation. We thus observe that, on the one hand, spreads for senior tranches practically

vanish, which reflects the fact that there are fewer default clusters and hence a lower probability

of these tranches being triggered. On the other hand, spreads for equity tranches increase because

now defaults are evenly spread in time and therefore these tranches are more likely to be triggered.

Moreover, by switching off macroeconomic effects, the default of a systemic entity no longer has

an effect on consumption – conditional on xt and yt . By eliminating the possibility of a dramatic

drop in consumption due to a systemic default, consumption becomes less volatile (the standard

deviation of consumption growth goes from 5% in the baseline case to 2%, see second row of

Table 3) and a systemic default no longer needs to occur only in a bad state of the economy;

this implies that investors no longer require risk premiums that are as high as under our baseline

estimation. Consequently, we observe that the average equity excess return and maximum Sharpe

ratio are muted and all spreads (indexes and tranches) decrease substantially. The counterfactual

exercises support the conjecture that both channels – contagion and macroeconomic effect – are

important for the model fit.

The model fit is also illustrated by Figures 4 to 8. Figure 4 depicts the fit of stock returns

and consumption growth. In our framework, model-implied stock returns are given by a linear

combination of the state vector Xt and and its lag Xt−1 (see eq. a.12). Let us stress that our esti-

mation approach does not directly involve stock returns; in this sense, the fit shown on Panel (a) is

“out-of-sample”. Panel (b) of Figure 4 demonstrates that the model-implied persistent component

28The importance of Sharpe ratios to match empirical regularities across markets is highlighted by Chen et al.
(2009). Appendix O.5 details the computation of the maximum Sharpe ratio in our context.
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of ∆ct (i.e. µc,0 + µc,xxt + µc,yyt , see eq. 4) captures an important share of observed consumption

growth fluctuations. Though the consumption process also underlies the pricing of credit deriva-

tives in Christoffersen et al. (2017) or in Seo and Wachter (2018), the latter two papers do not

discuss the ability of their model to track consumption’s dynamics. Figure 5 complements the

information provided on Figure 4 by displaying the unconditional distribution of year-on-year con-

sumption growth. Panel (a) of this figure shows the probability distribution function (p.d.f.) of this

distribution and Panel (b) shows its cumulative distribution function (c.d.f.).29 The fact that this

distribution features a fat left tail is better seen on Panel (b), which shows in particular that while

the probability of observing a drop in consumption by more than 5% is close to 2% in our baseline

model, it would be (virtually) zero in the absence of disastrous events (µc,w = 0, case represented

by the dashed line).

Figure 6 illustrates the fit of the iTraxx index swap spreads of different maturities. Figure 7

compares observed and model-based implied volatilities of far-OTM put options and Figure 8 dis-

plays tranche price estimates. These figures show that the model is successful in capturing the main

joint fluctuations of consumption growth, stock returns and stock and credit derivatives exposed to

systemic risk. In particular, our model is able to fit stock returns (computed on the EURO STOXX

50) despite the fact that this series is not included in the estimation. Moreover, although we use a

longer sample (2006-2017 versus 2005-2008) –including acute crisis periods– and a larger cross-

section of prices than in Collin-Dufresne et al. (2012), Christoffersen et al. (2017), or Seo and

Wachter (2018), the fit we obtain for credit derivatives is comparable to theirs.30

29Closed-form formulas for the conditional c.d.f. of a linear combination of the state vector Xt can be deduced from
a straightforward adaptation of Corollary 2 (see Appendix C.1.1). At a bi-monthly frequency, annual consumption
growth is an affine combination of six consecutive values of the state vectors Xt (see eq. 4).

30Unlike our analysis (which uses the iTraxx Europe main index), these studies focus on (U.S.) CDX-index data.
However, the 10-year index swap spreads of both CDX and iTraxx indexes share similar dynamics and descriptive
statistics. Specifically, the 10-year spreads on the iTraxx index feature a slightly lower mean (of about 98 basis points,
relative to its CDX-counterpart of 107 basis points) and higher standard deviation (of about 40 basis points, relative
to its CDX-counterpart of 30 basis points). Moreover, regressing 10-year iTraxx index swap spreads on 10-year CDX
index swap spreads (respectively, regressing the squared values of 10-year iTraxx index swap spreads on the squared
values of 10-year CDX index swap spreads) we find that, at a 1% significance level, we fail to reject that the intercept
is statistically different from zero and that the slope coefficient is statistically different from 1, while the reported
R-squared is of 75% (resp. 61%).
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Table 2: Estimated parameters

Panel (a) – Calibrated parameters Panel (b) – Estimated parameters
γ 3 ci i ∈ {1,2} 0.38 [0.00]
δ 0.997
EIS 1 βi i ∈ {1,2} (×102) 1.42 [0.01]

µw (×10−2) 3.11 [0.68]
E(∆ct) (×6) 1.50% ξw (×102) 5.14 [1.14]
s.d.(∆ct + · · ·+∆ct−5) 5.00%
σc 0.80% µx (×102) 0.81 [0.27]
E(gd,t) (×6) 1.50% µy (×102) 6.19 [1.78]

ρx 0.988 [0.00]
ρy 0.831 [0.02]

µc,x (×104) −3.06 [0.90]
µc,y (×104) −6.74 [1.49]
µc,w (×104) −4.18 [0.31]

µd,x (×104) −7.91 [3.66]
µd,y (×104) −17.40 [7.11]
µd,w (×104) −10.80 [2.11]

This table presents the model parameterization. γ is the coefficient of relative risk aversion, δ is the time
discount factor. EIS is the elasticity of intertemporal substitution. E(∆ct) and E(gd,t) are multiplied by 6
so as to be expressed in annualized terms. The parameterization is such that E(xt) = E(yt) = 1 (see Ap-
pendix A.1). Parameters ci and βi define the conditional distribution of the number of defaults in segment i
on date t, given in eq. (2). Parameters ξw and µw define the conditional distribution of wt , which is given in
eq. (3). Parameters µx, µy, ρx and ρy characterize the dynamics of factors xt and yt (see eq. 1). The specifica-
tion of the consumption growth rate is given by eq. (4), that is: ∆ct = µc,0 + µc,xxt + µc,yyt + µc,wwt +σcεc

t .
s.d.(∆ct + · · ·+∆ct−5) denotes the unconditional standard deviation of consumption growth. The specifi-
cation of the dividend growth rate is given by eq. (12), that is gd,t = µd,0 + µd,xxt + µd,yyt + µd,wwt . It is
assumed that [µd,x,µd,y,µd,w] = χ[µc,x,µc,y,µc,w]. Panel (a) reports calibrated parameters. Panel (b) reports
parameters estimated by maximizing an approximation of the log-likelihood associated with the state-space
model defined by measurement equations (17) and transition equations (18) (see Subsection 4.2). Standard
deviations (in square brackets) are calculated from the outer product of the log-likelihood gradient, evaluated
at the estimated parameter values.
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Table 3: Model fit and counterfactuals

(I) (II) (III)
Data Baseline c = 0 µc,w = 0

Panel (a) Model-implied population moments (in percent)
Avg. annual consumption growth 2.00a 1.49 1.49 1.49
St. dev. annual consumption growth 1.5a / 2.9b / 5.7c 5.00 4.34 2.07
Avg. short-term risk-free rate 1.48a 2.09 2.09 2.70
St. dev. short-term risk-free rate 2.54a 0.86 0.58 0.08
Avg. equity excess return 5.69 4.37 1.07
Maximum Sharpe ratio 74.9 34.9 4.7
Avg. default proba. of a systemic entity 0.30d 0.30 0.30 0.30
Panel (b) ITRAXX indices (in b.p.)
3 years 65 60 40 33
5 years 88 72 37 31
7 years 101 84 35 30
10 years 112 115 35 30
Panel (c) ITRAXX tranches (in b.p.)
3 years, Tranche: 0-3% 1879 1580 2488 1218
3 years, Tranche: 3-6% 772 543 79 269
3 years, Tranche: 6-9% 452 321 7 111
3 years, Tranche: 9-12% 160 230 6 47
3 years, Tranche: 12-22% 113 80 0 5
5 years, Tranche: 0-3% 1444 1271 2063 957
5 years, Tranche: 3-6% 663 481 142 238
5 years, Tranche: 6-9% 421 295 10 105
5 years, Tranche: 9-12% 151 235 4 52
5 years, Tranche: 12-22% 91 108 0 8
7 years, Tranche: 0-3% 1241 1172 1917 856
7 years, Tranche: 3-6% 672 470 206 231
7 years, Tranche: 6-9% 439 290 19 104
7 years, Tranche: 9-12% 146 231 3 52
7 years, Tranche: 12-22% 94 113 0 9
Panel (d) Implied Volatility (in p.p.)
Maturity: 6 months 33% 30% 36% 13%
Maturity: 12 months 30% 31% 33% 10%

a: These moments are based on the Area-wide-Model (AWM) database for the euro area (Fagan et al., 2001,
updated database covering the period from 1970Q1 to 2017Q4); b and c come from Barro and Ursua (2011,
Table 2, OECD countries), b (respectively c) is based on a large sample starting at the end of the 19th century
and ending in 2009 (resp. a post-world-war-II sample); d is based on Moody’s (2017) (see Footnote 23).
The reported maximum Sharpe ratio is evaluated at the population mean of the state vector, i.e. for Xt = X̄
(a one-year investment is considered here; see Online Appendix O.5 for computational details). Panels (b),
(c) and (d) report sample averages. Model-implied prices are evaluated by setting factors xt and yt to their
filtered values derived from the extended Kalman filter (see Subsection 4.2). Models (II) and (III) are modified
versions of Model (I), which is the baseline model; in Model (II), there is no contagion (i.e. c1 = c2 = 0) and
β1 = β2 are modified so as to keep the same average default probability of systemic entities; in Model (III),
defaults do not affect consumption (i.e. µc,w = 0; see eq. 4).
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Figure 3: Estimated factors xt and yt
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This figure displays the filtered values of xt and yt . These values stem from the extended Kalman filter applied on the
state-space model whose measurement and transition are eqs. (17) and (18), respectively. Gray-shaded areas are 95%
(prediction) confidence intervals.

Figure 4: Fit of stock returns and consumption growth
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This figure compares model-implied and observed series of stock returns and consumption growth. Stock returns
(Panel (a)) are computed on the EURO STOXX 50 index. Model-implied stock returns are based on eq. (a.12). On
Panel (b), the black solid line corresponds to the part of annualized consumption growth that is accounted for by xt
and yt , that is 6× (µc,0 + µc,xxt + µc,yyt) (see eq. 4). Observed annualized consumption is at the quarterly frequency
(gray solid line); to obtain a bi-monthly series (dotted gray line), we apply a cubic spline to the quarterly series of
consumption.
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Figure 5: Model-implied distribution of consumption growth
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This figure displays the model implied probability density function [p.d.f., Panel (a)] and cumulative distribution func-
tion [c.d.f., Panel (b)] of annual (log) consumption growth (black solid lines). On Panel (a), we also report a kernel-
based estimate of annual consumption growth based on the Area-wide-Model (AWM) database for the euro area
(Fagan et al., 2001, updated database covering the period from 1970Q1 to 2017Q4). The dashed grey line displayed
on Panel (b) corresponds to the c.d.f. that would prevail if we had no direct effect of defaults on consumption, that
is if we had µc,w = 0 (se eq. 4). The computation of the c.d.f. of consumption growth is based on a straightforward
adaptation of Corollary 2 (using the fact that annual consumption growth is an affine combination of six consecutive
values of the state vectors Xt , see eq. 4).
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Figure 6: Fit of iTraxx index swap spreads
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This figure displays index swap spreads (iTraxx Europe main index, black dots) and their model-implied counterparts
(gray solid lines). The data cover the period from January 2006 to September 2017 at a bi-monthly frequency. Spreads
are expressed in basis points.
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Figure 7: Equity options
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This figure displays implied volatilities of put options written on the EURO STOXX 50 index (black dots) and their
model-implied counterparts (gray solid lines). The dashed black lines represent (model-based) implied volatilities
that would prevail if agents were risk-neutral; they correspond to the implied volatilities computed under the physical
measure P.
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5.2 Dynamic effects of systemic defaults

This subsection examines the dynamic implications of a systemic default. We focus on both con-

sumption and stock returns; the implications on credit derivative prices will be considered in the

next subsection. The dynamic analysis relies on impulse response functions (IRFs), where the ini-

tial shock consists of an unexpected additional default by a systemic entity. Figure 9 displays the

results.

The left-hand side panel of Figure 9 shows the dynamic responses of the number of systemic

defaults following an unexpected systemic default on date t = 0. Because of contagion phenomena,

the initial default increases the expected number of subsequent systemic defaults. More precisely,

a systemic default triggers two additional systemic defaults in the subsequent two years, on av-

erage. The middle panel shows, in black, the response of consumption following the systemic

default. This response is gradual, going from 0 to −3% in the two years following the shock. The

economic impact of a systemic default is therefore substantial. For the sake of comparison, using

international data, Laeven and Valencia (2012) find that a systemic banking crisis is, on average,

followed by a 23% decrease in output, which would correspond to about 8 defaults of systemic

entities (assuming that consumption and GDP move in tandem). Interestingly, in our model, a sys-

temic default has not only an impact on conditional expectations, but also on conditional variances:

upon arrival of a systemic default, we observe a jump of the volatility of consumption growth, i.e.

a dramatic increase in economic uncertainty (right-hand plot of Figure 9).

The middle and right-hand side panels of Figure 9 further display the respective responses of

ex-dividend stock returns r∗t and their volatility. Following a systemic default, the conditional

level and volatility of the stock index undergo the same types of effects as consumption does,

except that the stock price response (in level, central plot) is immediate. This is consistent with the

forward-looking nature of stock returns. The figure also displays (in dotted lines) the responses

to an unexpected default of a systemic entity when the contagion channel is switched off. As

expected, no contagion implies that the default of a systemic firm will not induce further systemic

defaults. Moreover, under no contagion, the effects on consumption and stock returns become

muted; dropping by less than 1% and 2%, respectively.
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Figure 9: Responses to an unexpected default of a systemic entity
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This figure displays response functions of different variables to an additional default of a systemic entity at date t = 0.
That is, the initial shock is ns

t=0 = E(ns
t )+ 1. The left-hand side panel displays the effect on the number of systemic

defaults. The middle panel displays changes in expectations of future consumption and of the future stock index. The
right-hand side panel shows the effect on the expectations of future conditional variances of consumption growth and
of stock returns. To facilitate the reading, we plot the square roots of the expected conditional variance. On each panel,
the dashed lines indicate the responses that would prevail in the absence of contagion effects (i.e. if c1 = c2 = 0, see
eq. 2).
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5.3 Credit risk premiums

Let us now turn to the study of credit risk premiums, defined as the differences between model-

implied prices and those prices that would be observed if agents were not risk averse. The latter

prices are computed by replacing EQ by EP ≡ E in the pricing formulas. In other words, these

counterfactual prices are computed “under the physical measure P” (whereas standard model-

implied prices are computed under the risk-neutral measure Q).

Let us first consider the decompositions of Credit Default Swap (CDS) spreads. Figure 10

displays the P (gray) and Q (black) CDS spreads associated with maturities of 5 and 10 years. The

differences between the two types of spreads are credit risk premiums. The solid lines correspond

to spreads of CDSs written on systemic entities. In late 2011, CDS premiums accounted for almost

75% of the 10-year CDS spread. Such high risk premiums reflect the fact that the default of a

systemic entity is a particularly bad state of the world, i.e. a state of high marginal utility: when it

happens, agents dramatically revise their future consumption path downward (consistently with the

IRF plotted on the middle panel of Figure 9). For a CDS written on a systemic entity, the protection

seller expects to face large losses in bad states of the world. As a result, she is willing to provide

this protection only if the compensation is high enough, i.e. if the CDS spread is sufficiently above

her expected loss, which translates into high credit risk premiums.

At this stage, we have not discussed the parametrization of the number of non-systemic defaults

(n3,t). Given this number does not cause any other variable in the model (see Figure 1), it does not

affect the prices we have considered until now. In particular, it was not necessary to parametrize

the conditional distribution of n3,t to estimate the model. Thus, we are now free to choose the

exposure of non-systemic entities, which we will exploit to investigate the influence of default

risk exposure to credit risk premiums. Recall that the conditional distribution of the number of

defaults in segment j is P(β jyt+1 + c jns
t ) (this is eq. 2). Therefore, the default risk exposure of

segment-3 entities is defined by the pair (β3,c3). The triangles in Figure 10 are obtained by taking

c3 = 0.5c1 = 0.5c2 and by computing β3 in order to have segment-3 entities featuring the same

average default probability as the systemic entities (from segments 1 and 2). Figure 10 shows that

the spreads of CDS written on these entities are far lower than those for systemic entities. This

37



Results

figure also shows that the P components of the CDS spreads of systemic entities and segment-3

entities are close. This was expected as P-CDS spreads essentially reflect default probabilities and

segment-3 entities have, on average, the same default probability as systemic entities. The reason

why credit risk premiums are far lower for segment-3 entities is that the defaults of such entities

tend to occur in relatively better states of the world than is the case for systemic entities. Though

defaults of segment-3 entities are more likely to happen when yt is high, the decline in consumption

may then remain subdued as long as such a high level of yt has not triggered (recessionary) defaults

of systemic entities.

Again, the exposure (β3,c3) chosen for segment-3 entities was arbitrary. Another exposure

(β3,c3) would have resulted in different dotted lines in Figure 10. In particular, we could have

chosen β3 < β1 and c3 > c1 (say), still keeping the average default probability constant. In this

case, compared to systemic entities, a larger fraction of defaults of segment-3 entities would take

place in particularly bad states of the world. Accordingly, we would expect higher CDS spreads for

this new type of entities than for the systemic ones. They would remain “non systemic” because

their default would still not cause a drop in consumption growth or other defaults.

Let us define the Q/P ratio as the ratio between model-implied CDS spreads and counter-factual

P-CDS spreads. Figure 11 explores in a systematic way the relationship between the exposures to

the risk factors (β3,c3) on the one hand, and the 10-year-maturity Q/P ratio on the other hand. On

Figure 11, we connect, with black lines, those pairs of exposures resulting in the same average Q/P

ratio. We also connect, with dashed gray lines, pairs of exposures resulting in the same average

one-year probability of default. Whereas the black square represents the segment-3 entity we

considered in Figure 10, the triangle indicates an entity that features the same exposures as our

systemic entities. While the average default probabilities of these two types of entities are close,

their Q/P ratios differ substantially (2.75 and 2, respectively). The figure also shows that, for

each average probability of default, there exists a maximum Q/P ratio. Typically, for a one-year

probability of default of 0.2% (say), the maximum Q/P ratio is about 3.

Credit risk premiums are also present in iTraxx tranche spreads. On Figure 8, these risk premi-

ums are the differences between the gray lines and the dashed black lines: while the gray lines are
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the model-implied tranche prices, the dotted lines are their P-counterparts, i.e. the (model-implied)

prices that would prevail if agents were not risk averse. The more senior the tranche, the higher

the relative importance of credit risk premiums. This is consistent with the fact that more senior

tranches are more exposed to catastrophic events.

5.4 Measuring systemic risk

Our approach provides natural measures of systemic risk by considering the probabilities of having

at least ω systemic defaults (say) at any given horizon h.31

As an illustration, the top panel of Figure 12 plots the probability of observing at least 10

iTraxx constituents defaulting in the next 12 months (dotted line) and 24 months (solid line). We

also report vertical lines indicating significant dates of the financial crisis. Our systemic indicators

reached their maximum levels in late 2008, after the Lehman bankruptcy and in late 2011, when

the European sovereign crisis was at its peak. For these two dates, the conditional probabilities

to have more than 10 defaults among iTraxx constituents within two years were of 7% and 6%,

respectively.

The bottom panel of Figure 12 depicts an alternative indicator of systemic risk by reporting the

probabilities of consumption dropping by more than 10% (solid line) and 20% (dotted line) in the

next 12 months. In line with our first indicator, these probabilities reached their maximum levels

at the time of the Lehman bankruptcy and at the height of the European sovereign crisis. On these

two dates, the probabilities of consumption dropping by more than 10% in the next 12 months

were of 6% and 5%, respectively.

31Closed-form formulas can be deduced from a straightforward adaptation of Corollary 2.
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Figure 10: Credit risk premiums in iTraxx Europe main indexes
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This figure illustrates the magnitude of credit risk premiums in iTraxx Europe main indexes. The black solid line is the
model-implied iTraxx index. The gray solid line is the (counter-factual) iTraxx index that would prevail if agents were
not risk averse (said to be the iTraxx index “under the physical measure P”). The difference between the black and gray
solid lines reflects credit risk premiums. Triangles correspond to (P and Q) CDS spreads associated with a firm from
the third segment; these entities are non-systemic, in the sense that their defaults do not Granger-cause consumption;
however, they may be exposed to systemic-risk factors, which implies that the CDS written on segment-3 entities
may embed substantial risk premiums. Recall that the conditional distribution of number of defaults in segment j is
P(β jyt+1 + c jns

t ) (see eq. 2). As explained in Subsection 5.3, the specification of the exposure of segment-3 entities
(i.e. β3 and c3) is arbitrary. In the context of this chart, the exposure is defined by c3 = 0.5× c1 = 0.5× c2, and by
setting β3 in such a way as to have the same average default probability as systemic entities (segments 1 and 2). This
is why P CDS spreads coincide for systemic and segment-3 entities. This is not the case for Q CDS spreads: because
c3 < c1 = c2, segment-3 entities are relatively less exposed to disasters than systemic entities, which translates into
lower credit-risk premiums. See Subsection 5.3 for more details.
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Figure 11: Impact of exposures to the exogenous factor yt (measured by β j) and to the number of
systemic defaults ns

t (measured by c j) on the average size of credit risk premiums
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This figure illustrates the influence of the exposure to the risk factors – that are the exogenous variable yt and the
number of systemic defaults ns

t – on the relative importance of risk premiums in CDS spreads. The coordinates of
each point correspond to the exposure of a given entity to factor yt (abscissa) and to the number of systemic defaults,
i.e. ns

t (ordinate). The black lines connect the pairs of exposures implying the same Q/P ratio, defined as the ratio
between the (model-implied) CDS spread and the counter-factual CDS spread that would be observed if agents were
risk-neutral. (The former is the one computed under the pricing, or risk-neutral, measure Q; the latter is computed
under the physical measure P, hence the denomination “Q/P ratio”.) We consider the 10-year maturity. The gray
dashed lines connect pairs of exposures implying the same average probability of default. Figures reported in gray
are probabilities of default expressed in annualized percentage points. The triangle indicates a pair of exposures
corresponding to the systemic entities. The square indicates the pair of exposures of non-systemic entities whose CDS
indexes are displayed in Figure 10.
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Figure 12: Systemic indicators
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The top panel of this figure displays the (model-implied) probabilities that at least 10 iTraxx constituents – considered
to be systemic entities – default in the coming 12 months (dotted line) and 24 months (solid line). The bottom panel
displays the (model-implied) probabilities that consumption drops by at least 10% (solid line) and 20% (dotted line)
in the next 12 months. Gray-shaded areas are 95% confidence bands; they reflect the uncertainty surrounding filtered
xt and yt . The vertical bars correspond to important dates of the financial crisis (see Bruegel, http://bruegel.org/
2015/09/euro-crisis/): (1) August 2007: European interbank markets seize-up; (2) 15 September 2008: Collapse
of Lehman Brothers; (3) 7 May 2010: Emergency measures to safeguard financial stability; (4) October 2011: Spain
and Italy are hit by a wave of rating downgrades by the three main rating agencies; (5) 26 July 2012: ECB President
Mario Draghi says that the ECB will do “whatever it takes to preserve the euro”.
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Concluding remarks

6 Concluding remarks

In the literature on disaster risk and its asset pricing implications, disasters are usually modeled as

exogenous shocks that simultaneously impact macroeconomic variables and default probabilities

of firms. In the present paper, we propose a no-arbitrage asset pricing framework that allows for the

default of large (systemic) firms to constitute a disaster in itself. More precisely, in our model, such

a systemic default (i) has an adverse macroeconomic impact, and (ii) can trigger default cascades;

thus leading to an amplification of the original recessionary effect.

Before the occurrence of such a disaster, the probabilities of default depend on a small number

of factors capturing the fluctuations of the economy. Risk-averse investors observe these factors,

and price derivatives that are consistent with the model structure. The model offers closed-form so-

lutions for a wide variety of derivatives that are exposed to systemic risk, notably far-OTM equity

puts and credit derivatives. In this context, the econometrician can infer the model parametrization

from observed prices even if no systemic default has taken place over the estimation period. That is

because, typically, prices of CDOs provide information on the views of investors regarding conta-

gion effects. Indeed, the parameters governing the contagion mechanism influence the conditional

distribution of the number of future defaults, which CDO prices directly depend on.

The empirical application, on euro-area data, demonstrates the ability of our model to capture a

substantial share of the joint fluctuations of stock and credit markets, both in tranquil and stressed

periods. Our approach also provides an estimation of the conditional effect of a systemic default

on consumption. This effect is found to be substantial: the default of a systemic entity is expected

to be followed by a 3% decrease in consumption. We finally derive systemic risk indicators defined

as: (i) the probability of joint defaults of systemic entities, and (ii) the probability of consumption

displaying a sharp drop in the next year. In addition, our results point to the existence of impor-

tant risk premiums in the credit derivatives written on systemic entities. This implies that simple

inversions of CDS pricing formulas to obtain probabilities of default – without correcting for risk

aversion – may tend to substantially overestimate these probabilities.
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State-vector dynamics

A State-vector dynamics

A.1 The dynamics of zt = [xt ,yt ]
′

We assume that, conditional on {xt ,yt}, xt+1 and yt+1 are independently drawn from non-centered
Gamma distributions:32

xt+1|xt ,yt ∼ γνx(ζxxt ,µx)

yt+1|xt ,yt ∼ γνy(ζy,xxt +ζy,yyt ,µy).

In this case, we have that (Monfort et al., 2017):

xt = µxνx +µxζxxt−1 +σx,tεx,t

yt = µyνy +µyζy,xxt−1 +µyζy,yyt−1 + σ̃y,t ε̃y,t ,

where ε̃t = [εx,t , ε̃y,t ]
′ is a martingale difference sequence with identity covariance matrix and

where:

σx,t = µx
√

νx +2ζxxt−1,

σ̃y,t = µy

√
νy +2ζy,yyt−1 +2ζy,xxt−1.

Let us use the notations ρx = µxζx and ρy = µyζy,y and let us assume that (i) 1−ρx = µxνx = µyνy

and that (ii) ρx−ρy = µyζy,x. We get:{
xt−1 = ρx(xt−1−1)+σx,tεx,t ,

yt = 1−ρx +ρxxt−1 +ρy(yt−1− xt−1)+ σ̃y,t ε̃y,t .

Defining εy,t =
σ̃y,t ε̃y,t−σx,tεx,t√

σ̃2
y,t +σ2

x,t

and σy,t =
√

σ̃2
y,t +σ2

x,t leads to System (1).

32The random variable W is drawn from a non-centered Gamma distribution γν(ϕ,µ), iif there exists a P(ϕ)-
distributed variable Z such that W |Z ∼ γ(ν +Z,µ) where Z and µ are, respectively, the shape and scale parameters of
the Gamma distribution (Gouriéroux and Jasiak, 2006, see e.g.). When Z = 0 and ν = 0, then W = 0. When ν = 0,
this distribution is called Gamma0 distribution; this case is introduced and studied by Monfort et al. (2017).
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State-vector dynamics

A.2 The conditional log-Laplace transform of Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′

The dynamics followed by Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′ is a special case of the general case treated in
the Online Appendix (see O.1) with:

ζF =

 ζx ζy,x 0
0 ζy,y 0
0 0 0

 , ζn =

 0 0 ξw

0 0 ξw

0 0 0

 , β =

 0 0 0
β1 β2 β3

0 0 0

 , c =

 c1 c2 c3

c1 c2 c3

0 0 0

 ,
and µ = [µx,µy,µw]

′, ν = [νx,νy,0]′.
As shown in the Online Appendix (O.1), in this case the conditional log Laplace transform of

Xt is given by:

Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)) = exp(ψ0(ν)+ψ1(ν)

′Xt), (a.1)

where {
ψ0(v) = d

(
∑

J
j=1(exp(vB, j)−1)β j + vA

)
,

ψ1(v) = [ψ1,A(v)′,ψ1,B(v)′,ψ1,C(v)′]′,
(a.2)

with d(w) = −ν ′ log(1−w� µ), where � is the element-by-element (Hadamard) product (and
where, by abuse of notations, the log operator is applied element-by-element wise) and where:

ψ1,A(v) = a(∑J
j=1(exp(vB, j)−1)β j + vA),

ψ1,B(v) = b(∑J
j=1(exp(vB, j)−1)β j + vA)+∑

J
j=1(exp(vB, j)−1)c j + vB + vC,

ψ1,C(v) = c(∑J
j=1(exp(vB, j)−1)β j + vA)−∑

J
j=1(exp(vB, j)−1)c j,

(a.3)

where β j and c j denote the jth columns of β and of c respectively, and where v = [v′A,v
′
B,v
′
C]
′,

where vA is a nF -dimensional vector and vB and vC are J-dimensional vectors, and:

a(w) = ζF

(
w�µ

1−w�µ

)
, b(w) = ζn

(
w�µ

1−w�µ

)
, c(w) =−b(w),

where, again, the log and division operator are applied element wise, by abuse of notations.
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Derivation of the s.d.f.

B Derivation of the s.d.f.

Proposition 1. ut = ut−1+µc,0+µ ′u,1Xt +(µc,1−µu,1)
′Xt−1+(1−δ )σcεc

t satisfies eq. (6) for any

[X ′t ,X
′
t−1]

′ iff µu,1 satisfies:

δ

1− γ
ψ1((1− γ)µu,1) = µu,1−µc,1, (a.4)

where µc,1 = [µc,x,µc,y,µc,w,0′]′ (see eq. 4).

Proof. Let us consider the following specification for ∆ut :

∆ut = µu,0 +µ
′
u,1Xt +µ

′
u,2Xt−1 +(1−δ )σcε

c
t .

Then, for a given [X ′t ,X
′
t−1]

′, we have:

eq. (6) ⇔ µu,0 +µ
′
u,1Xt +µ

′
u,2Xt−1

= µc,0 +µ
′
c,1Xt +

δ

1−δ

1
1− γ

{
[ψ1((1− γ)µu,1)+(1− γ)µu,2]

′(Xt−Xt−1)
}
.

Therefore eq. (6) is satisfied for any [X ′t ,X
′
t−1]

′ iff
δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)+
1

1−δ
µu,2 = 0,

µu,1−µc,1− δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)− δ

1−δ
µu,2 = 0,

µu,0 = µc,0,

or 
δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)+
1

1−δ
µu,2 = 0,

µu,1 +µu,2−µc,1 = 0,
µu,0 = µc,0,

(a.5)

which leads to the result.

Proposition 2. We have:

Mt,t+1 = exp
[
−(η0 +η

′
1Xt)+π

′Xt+1−ψ(π,Xt)−ηcε
c
t −

1
2

η
2
c

]
, (a.6)
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with 
π = (1− γ)µu,1−µc,1

η0 = − log(δ )+µc,0 +ψ0((1− γ)µu,1)−ψ0(π)+(1− γ)(1−δ )σ2
c

η1 = ψ1((1− γ)µu,1)−ψ1(π)

ηc = (γ(1−δ )+δ )σc

Proof. When agents’ preferences are as in eq. (6), the s.d.f. is given by (Piazzesi and Schneider,
2007):

Mt,t+1 = δ

(
Ct+1

Ct

)−1 exp[(1− γ)ut+1]

Et(exp[(1− γ)ut+1])
.

Therefore, we have:

logMt,t+1 = logδ −∆ct+1 +(1− γ)ut+1− logEt(exp[(1− γ)ut+1])

= logδ −∆ct+1 +(1− γ)∆ut+1− logEt(exp[(1− γ)∆ut+1])

= log(δ )−µc,0−µ
′
c,1Xt+1−σcε

c
t +(1− γ)(µu,0 +µ

′
u,1Xt+1 +µ

′
u,2Xt +(1−δ )σcε

c
t )

− logEt(exp[(1− γ)(µu,0 +µ
′
u,1Xt+1 +µ

′
u,2Xt +(1−δ )σcε

c
t )])

= log(δ )−µc,0−ψ0((1− γ)µu,1)+ [(1− γ)µu,1−µc,1]
′Xt+1−ψ1((1− γ)µu,1)

′Xt

−σcε
c
t +(1− γ)(1−δ )σcε

c
t −

1
2
(1− γ)2(1−δ )2

σ
2
c ,

which leads to the result.

Proposition 3. We have:

exp
(

ψ
Q(v,Xt)

)
≡ EQ

t
(
exp(v′Xt+1)

)
= exp

(
ψ

Q
0 (v)+ψ

Q
1 (v)′Xt

)
, (a.7)

with {
ψ

Q
0 (v) = ψ0(v+π)−ψ0(π),

ψ
Q
1 (v) = ψ1(v+π)−ψ1(π).

Proof. Using the s.d.f. specification of Eq. (a.6), we get:

EQ
t
(
exp(v′Xt+1)

)
= Et

(
Mt,t+1

Et(Mt,t+1)
exp(v′Xt+1)

)
= Et

(
exp[π ′Xt+1−ψ(π,Xt)+ v′Xt+1]

)
= exp(ψ(v+π,Xt)−ψ(π,Xt)),

which leads to Eq. (a.7).

50



Pricing formulas

C Pricing formulas

C.1 Generic pricing formulas

C.1.1 Pricing of exp(u′Xt+h) and v′Xt+h, settled at date t +h

Proposition 4. The date-t price p(u,h,Xt) of the payoff exp(u′Xt+h), that is settled at date t +h, is

given by exp(Γ0,h(u)+Γ′1,h(u)Xt), where:Γ1,h+1(u) = ψ
Q
1 (Γ1,h(u))−η1,

Γ0,h+1(u) = ψ
Q
0 (Γ1,h(u))−η0 +Γ0,h(u),

with Γ1,0(u) = u and Γ0,0(u) = 0.

Proof. This proposition is clearly satisfied for h = 0. Assume that, for a given h ≥ 0 and for all
admissible u and Xt , we have p(u,h,Xt) = exp(Γ0,h(u)+Γ1,h(u)′Xt), then

p(u,h+1,Xt) = exp(−rt)EQ
t (p(u,h,Xt+1))

= exp(−rt)EQ
t (exp(Γ0,h(u)+Γ1,h(u)′Xt+1))

= exp(−η0 +Γ0,h(u)−η
′
1Xt)EQ

t (exp(Γ1,h(u)′Xt+1))

= exp(−η0 +Γ0,h(u)−η
′
1Xt)exp

(
ψ

Q
0 (Γ1,h(u))+ψ

Q
1 (Γ1,h(u))′Xt

)
,

which leads to the result by recursion.

Corollary 1. The date-t price of the payoff v′Xt+h, conditional on Xt = x, with payoff settlement at

date t +h, is given by:

Π(v,h,x) = v′∇u p(u,h,x)
∣∣
u=0 , (a.8)

where p(u,h,x) is defined in Proposition 4 and where ∇u denotes the Jacobian operator with

respect to the first argument of the function.

Let us denote by 0r×c and 1r×c the matrices of dimensions r×c filled with 0 and 1, respectively.
In addition, let e j denote the jth row vector of the identity matrix of dimension J× J. Using the
previous corollary with v′ = [01×3,e j,01×J] and v′ = [01×3,01×J,e j], respectively, results in the
prices of the payoffs N j,t+h and N j,t+h−1, settled at date t +h.

Corollary 2. The date-t price of the payoff exp(a′Xt+h)1{b′Xt+h<y}, conditional on Xt = x, with
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Pricing formulas

payoff settlement at date t +h, is given by:

g(a,b,y,h,x) = EQ
t
(
Λt,t+h exp(a′Xt+h)1{b′Xt+h<y}|Xt = x

)
=

p(a,h,x)
2

− 1
π

∫
∞

0

Im [p(a+ ivb,h,x)exp(−ivy)]
v

dv, (a.9)

where Im(z) denotes the imaginary part of the complex number z and where λt,t+h is defined in

eq. (10).

This result is proved in Duffie et al. (2000). Note that the formula for g(a,b,y,h,x) is quasi
explicit since it only involves a simple (one-dimensional) integration.

Corollary 3. The date-t price of the payoff a′Xt+h1{b′Xt+h<y}, conditional on Xt = x, with payoff

settlement at date t +h, is given by:

Γ(a,b,y,h,x) = a′∇ug(u,b,y,h,x)
∣∣
u=0 . (a.10)

Let us consider the date-t prices of the following payoffs, settled at date t + k: (i) 1{N1,t+k<z},
(ii) N1,t+k1{N1,t+k <z} and (iii) N1,t+k−11{N1,t+k<z}. Using the notations introduced in Corollar-
ies 2 and 3, these prices are respectively equal to: (i) g(0,ω0,z,h,Xt), (ii) Γ(ω0,ω0,z,h,Xt) and
(iii) Γ(ω1,ω0,z,h,Xt), with ω0 = [01×3,e1,01×J]

′ and ω1 = [01×3,01×J,e1]
′, where e1 is a J-

dimensional vector whose entries are 0, except the first one that is equal to 1.

C.1.2 Pricing of exp(u′1Xt+1 + · · ·+u′1Xt+h−1 +u′2Xt+h), settled at date t +h

Proposition 5. Using the notation u = {u1,u2}, the date-t price p̃(u,h,Xt) of the payoff

exp(u′1Xt+1 + · · ·+u′1Xt+h−1 +u′2Xt+h), for h > 1

and of exp(u′2Xt+1) for h = 1, settled at date t +h, is given by exp
(
Γ̃0,h(u)+ Γ̃1,h(u)′Xt

)
, where:Γ̃1,h+1(u) = ψ

Q
1 (Γ̃1,h(u)+u1)−η1,

Γ̃0,h+1(u) = ψ
Q
0 (Γ̃1,h(u)+u1)−η0 + Γ̃0,h(u),

with Γ̃1,1(u) = Γ1,1(u2) and Γ̃0,1(u) = Γ0,1(u2).

Proof. This proposition is clearly satisfied for h = 1. Assume that, for a given h ≥ 1 and for all
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admissible u and Xt , we know exp
(
Γ̃0,h(u)+ Γ̃1,h(u)′Xt

)
, then

p̃(u,h+1,Xt) = exp(−rt)EQ
t (exp(u′1Xt+1)p̃(u,h,Xt+1))

= exp(−rt)EQ
t (exp(Γ̃0,h(u)+ Γ̃1,h(u)′Xt+1 +u′1Xt+1))

= exp(−η0 + Γ̃0,h(u)−η
′
1Xt)EQ

t (exp([Γ̃1,h(u)+u1]
′Xt+1))

= exp(−η0 + Γ̃0,h(u)−η
′
1Xt)exp

(
ψ

Q
0 (Γ̃1,h(u)+u1)+ψ

Q
1 (Γ̃1,h(u)+u1)

′Xt

)
,

which leads to the result by recursion.

C.2 Tranche products formula

Let’s rewrite eq. (11):

EQ
t

{
qh

∑
k=1

Λt,t+k
Ñt+k− Ñt+k−1

b̄− ā
1{a<Ñt+k≤b}

}

= UT DS
t,h (a,b)+EQ

t

{
ST DS

t,h (a,b)

q

qh

∑
k=1

Λt,t+k

(
1{Ñt+k≤a}+

b− Ñt+k

b−a
1{a<Ñt+k≤b}

)}
,

where a = a Ĩ
1−RR and b = b Ĩ

1−RR . We obtain:

ST DS
t,h (a,b) =

EQ
t

{
∑

qh
k=1 Λt,t+k(Ñt+k− Ñt+k−1)

(
1{Ñt+k≤b}−1{Ñt+k≤a}

)}
− (b−a)UT DS

t,h (a,b)

EQ
t

{
∑

qh
k=1 Λt,t+k

(
(b−a)1{Ñt+k≤a}+(b− Ñt+k)

(
1{Ñt+k≤b}−1{Ñt+k≤a}

))} .

C.3 Approximated stock returns

Proposition 6. If the log growth rate of dividends is affine in Xt , i.e. if:

gd,t = µd,0 +µ
′
d,1Xt , (a.11)

then stock returns are approximately given by:

rs
t+1 = κ0 +A0(κ1−1)+µd,0 +(κ1A1 +µd,1)

′Xt+1−A′1Xt , (a.12)

where κ0 and κ1 are given by  κ1 =
exp(τ̄)

1+ exp(τ̄)
,

κ0 = log(1+ exp(τ̄))−κ1τ̄,
(a.13)
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where A1 satisfies

ψ1(κ1A1 +µd,1 +π) = A1 +η1 +ψ1(π),

and where

A0 =
−κ0−µd,0 +η0 +ψ0(π)−ψ0(κ1A1 +µd,1 +π)

κ1−1
.

Proof. Let us introduce the log price-dividend ratio defined by τt = log(Pt/Dt) and let us denote
by τ̄ its marginal expectation. The following lemma is based on the log-linearization proposed by
Campbell and Shiller (1988).

Lemma 1. if τt− τ̄ is relatively small, then the stock return rs
t+1 can be approximated by:

rs
t+1 = log

(
Pt+1 +Dt+1

Pt

)
≈ κ0 +κ1τt+1− τt +gd,t+1. (a.14)

Proof. See Online Appendix O.3

Assume that τt is affine in Xt , i.e.:

τt = A0 +A′1Xt . (a.15)

Substituting for τt in eq. (a.14) leads to eq. (a.12). Let us now determine the constraints that should
be satisfied by A0 and A1. The returns of stocks have to satisfy the Euler equation:

0 = logEQ
t (Λt,t+1 exp(rs

t+1)). (a.16)

Using eqs. (7) and (a.12), we obtain:

Mt,t+1 exp(rs
t+1) = (a.17)

exp(κ0 +A0(κ1−1)+µd,0−η0−ψ0(π)+(κ1A1 +µd,1 +π)′Xt+1− (A1 +η1 +ψ1(π))
′Xt).

eqs. (a.17) and (a.16) are satisfied if:{
κ0 +A0(κ1−1)+µd,0−η0−ψ0(π)+ψ0(κ1A1 +µd,1 +π) = 0,

ψ1(κ1A1 +µd,1 +π)− (A1 +η1 +ψ1(π)) = 0,

which proves Prop. 6.
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C.4 Equity option pricing

If τt and gd,t are affine in Xt (as in eqs. (a.11) and (a.15)), then eq. (15) implies that Pt+h/Pt is
exponential affine in Xt .

Let us introduce function ϕ defined by:

(u,h,Xt)→ ϕ(u,h,Xt) = EQ
t

(
Λt,t+h exp

(
u log

(
Pt+h

Pt

)))
.

Using eq. (15) and Prop. 5 (see Subsection C.1.2), one can find functions as
h(•) and bs

h(•) such
that:

ϕ(u,h,Xt) = exp(as
h(u)+bs

h(u)
′Xt).

Replacing p(a,h,x) by ϕ(a,h,x) in Corollary 2 of Subsection C.1.1 provides formulas to com-
pute:

EQ
t

(
Λt,t+h exp

[
a log

(
Pt+h

Pt

)]
1{

b log
(

Pt+h
Pt

)
<y
}∣∣∣∣Xt = x

)
.

Let us denote the expression above by g∗(a,b,y,h,x). With this notation, the price of a put option
(eq. 16) reads:

EQ
t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
= KEQ

t

(
Λt,t+h1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
−PtEQ

t

(
Λt,t+h exp(r∗t+1 + · · ·+ r∗t+h)1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
= Kg∗(0,1, log(K)− logPt ,h,Xt)−Ptg∗(1,1, log(K)− logPt ,h,Xt).
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Disastrous Defaults
Christian GOURIÉROUX, Alain MONFORT, Sarah MOUABBI and Jean-Paul RENNE

O.1 A general model of Xt’s dynamics

We consider the state vector Xt = [F ′t ,N
′
t ,N
′
t−1]

′, with Ft = [xt ,yt ,wt ]
′. Vectors Ft and Nt are,

respectively, nF -dimensional and J-dimensional. Conditional on Xt = {Xt ,Xt−1, . . .}, the different
components of Ft+1 are independent and drawn from non-centered Gamma distributions:33

Fi,t+1|Xt ∼ γνi(ζi,0 +ζ
′
i,FFt +ζ

′
i,nnt ,µi),

where νi, ζi,0 and µi are scalar, ζi,F is a nF -dimensional vector and ζi,n is a J-dimensional vector.
In this case, we have (Monfort et al., 2017):

Et
(
exp(w′Ft+1)

)
= exp

(
a(w)′Ft +b(w)′Nt + c(w)′Nt−1 +d(w)

)
, for any w ∈V, (a.18)

with

a(w) = ζF

(
w�µ

1−w�µ

)
, b(w) = ζn

(
w�µ

1−w�µ

)
, c(w) =−b(w),

d(w) = ζ
′
0

(
w�µ

1−w�µ

)
−ν

′ log(1−w�µ), (a.19)

and where V is the set of vector w whose components wi are in ]−∞,1/µi[, ζF = [ζ1,F , . . . ,ζnF ,F ],
ζn = [ζ1,n, . . . ,ζJ,n], ζ0 = [ζ1,0, . . . ,ζnF ,0]

′, µ = [µ1, . . . ,µnF ]
′, ν = [ν1, . . . ,νnF ]

′, � is the element-
by-element (Hadamard) product and where, by abuse of notations, the log and division operator
are applied element wise.

33The random variable W is drawn from a non-centered Gamma distribution γν(ϕ,µ), iif there exists a Poisson
P(ϕ)-distributed variable Z such that W |Z ∼ γ(ν +Z,µ) where Z and µ are, respectively, the shape and scale param-
eters of the Gamma distribution (see e.g. Gouriéroux and Jasiak, 2006). When Z = 0 and ν = 0, then W = 0. When
ν = 0, this distribution is called Gamma0 distribution; this case is introduced and studied by Monfort et al. (2017).
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Besides, conditional on Ω∗t = {Ft+1,Ωt}, we assume that n j,t = ∆N j,t , j = 1, . . . ,J are indepen-
dent with Poisson distributions:

n j,t+1|Ω∗t ∼P(β ′jFt+1 + c′jnt + γ j). (a.20)

Proposition O.1. The log conditional Laplace transform of process (Xt), denoted by ψ(v,Xt) and

defined by:

Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)), (a.21)

is affine in Xt . That is, we have:

ψ(v,Xt) = ψ0(ν)+ψ1(ν)
′Xt , (a.22)

with

ψ0(v) = d

(
J

∑
j=1

(exp(vB, j)−1)β j + vA

)
+

J

∑
j=1

(exp(vB, j)−1)γ j,

and where ψ1(v) = [ψ1,A(v)′,ψ1,B(v)′,ψ1,C(v)′]′, where:
ψ1,A(v) = a(∑J

j=1(exp(vB, j)−1)β j + vA),

ψ1,B(v) = b(∑J
j=1(exp(vB, j)−1)β j + vA)+∑

J
j=1(exp(vB, j)−1)c j + vB + vC,

ψ1,C(v) = c(∑J
j=1(exp(vB, j)−1)β j + vA)−∑

J
j=1(exp(vB, j)−1)c j,

(a.23)

with v= [v′A,v
′
B,v
′
C]
′, vA being a nF -dimensional vector and vB and vC being J-dimensional vectors.

Proof. We have:

Et
(
exp((v′A,v

′
B,v
′
C)Xt+1)

)
= Et

(
exp(v′AFt+1 + v′BNt+1 + v′CNt)

)
= Et

(
E
(

exp(v′AFt+1 + v′BNt+1 + v′CNt)
∣∣Ωt ,Ft+1

))
= Et

(
exp(v′AFt+1 +(vB + vC)

′Nt)E
(
exp(v′B(Nt+1−Nt))

∣∣Ω∗t ))
= Et

(
exp(v′AFt+1 +(vB + vC)

′Nt)E

(
exp

[
J

∑
j=1

vB, j(N j,t+1−N j,t)

]∣∣∣∣∣Ω∗t
))

= Et

(
exp

(
v′AFt+1 +(vB + vC)

′Nt +
J

∑
j=1

(
β
′
jFt+1 + c′j(Nt−Nt−1)+ γ j

)
(evB, j −1)

))
,
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the last equality resulting from the independence of the n j,t+1s conditional on Ω∗t . Therefore:

Et
(
exp((v′A,v

′
B,v
′
C)Xt+1)

)
= exp

({
J

∑
j=1

(evB, j −1)c j + vB + vC

}′
Nt−

{
J

∑
j=1

(evB, j −1)c j

}′
Nt−1 +

J

∑
j=1

γ j(evB, j −1)

)
×

Et

(
exp

({
J

∑
j=1

(evB, j −1)β j + vA

}′
Ft+1

))
,

and the result follows.

O.2 Conditional and unconditional moments of [F ′t ,n′t ]′

We have (see Monfort et al., 2017):

E(Ft+1|Xt) = µ� (ζ0 +ν)+µ� (ζ ′FFt +ζ
′
nnt) (a.24)

=: µF +ΦFFFt +ΦFnnt ,

Var(Ft+1|Xt) = diag
[
µ�µ� (2ζ0 +ν)+2({µ�µ}1′)� (ζ ′FFt +ζ

′
nnt)

]
(a.25)

=: diag(µvar
F +Φ

var
FFFt +Φ

var
Fn nt) ,

where 1 is a nF -dimensional vector of ones. Using further eq. (a.20), we obtain:

Et

([
Ft+1

nt+1

])
=

[
µF

γ +β ′µF

]
+

[
ΦFF ΦFn

β ′ΦFF β ′ΦFn + c′

][
Ft

nt

]

Vart

([
Ft+1

nt+1

])
= Et

(
Var

([
Ft+1

nt+1

]∣∣∣∣∣Xt
∗

))
+Vart

(
E

([
Ft+1

nt+1

]∣∣∣∣∣Xt
∗

))

= Et

([
0 0
0 diag(β ′Ft+1 + c′nt + γ)

])
+Vart

([
Ft+1

β ′Ft+1 + c′nt + γ

])

=

[
0nF×nF 0nF×J

0J×nF diag(β ′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)

]
+[

InF

β ′

]
diag(µvar

F +Φ
var
FFFt +Φ

var
Fn nt)

[
InF β

]
=

[
0nF×J

IJ

]
diag(β ′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)

[
0J×nF IJ

]
+[

InF

β ′

]
diag(µvar

F +Φ
var
FFFt +Φ

var
Fn nt)

[
InF β

]
.
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Using the fact that, for any n-dimensional vector a:

vec(diag(a)) =
n

∑
i=1

vec(diag[eie′ia]) =
n

∑
i=1

vec(eie′i)ai =

(
n

∑
i=1

vec(eie′i)e
′
i

)
︸ ︷︷ ︸

=:Sn

a,

we obtain:

vec

(
Vart

([
Ft+1

nt+1

]))

=

([
0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJ(β

′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)+([
InF

β ′

]
⊗

[
InF

β ′

])
SnF (µ

var
F +Φ

var
FFFt +Φ

var
Fn nt)

=

([
0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJ(β

′
µF + γ)+

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF µ

var
F +{([

0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJβ

′
ΦFF +

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF Φ

var
FF

}
Ft +{([

0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJ(β

′
ΦFn + c′)+

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF Φ

var
Fn

}
nt .

Therefore:

vec

(
Vart

([
Ft+1

nt+1

]))

=


SnF (µ

var
F +Φvar

FFFt +Φvar
Fn nt)

(InF ⊗β ′)SnF (µ
var
F +Φvar

FFFt +Φvar
Fn nt)

(β ′⊗ InF )SnF (µ
var
F +Φvar

FFFt +Φvar
Fn nt)

SJ(β
′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)+(β ′⊗β ′)SnF (µ

var
F +Φvar

FFFt +Φvar
Fn nt)
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=


SnF µvar

F

(InF ⊗β ′)SnF µvar
F

(β ′⊗ InF )SnF µvar
F

SJ(β
′µF + γ)+(β ′⊗β ′)SnF µvar

F

+


SnF Φvar
FF

(InF ⊗β ′)SnF Φvar
FF

(β ′⊗ InF )SnF Φvar
FF

SJβ ′ΦFF +(β ′⊗β ′)SnF Φvar
FF

Ft +


SnF Φvar

Fn

(InF ⊗β ′)SnF Φvar
Fn

(β ′⊗ InF )SnF Φvar
Fn

SJβ ′ΦFn +(β ′⊗β ′)SnF Φvar
Fn

nt .

Hence, both vec

(
Vart

([
Ft+1

nt+1

]))
and Et

([
Ft+1

nt+1

])
are affine functions of

[
Ft

nt

]
. Let

us introduce the following notations:

Et

([
Ft+1

nt+1

])
= µE +ΦE

[
Ft

nt

]

vec

(
Vart

([
Ft+1

nt+1

]))
= µV +ΦV

[
Ft

nt

]
.

Assuming that

[
Ft

nt

]
is covariance-stationary, we have:

E

([
Ft

nt

])
= E

([
Ft+1

nt+1

])
= µE +ΦEE

([
Ft

nt

])
,

which leads to:

E

([
Ft

nt

])
= (I−ΦE)

−1
µE .

We also have:

Var

([
Ft

nt

])
= E

(
Vart

([
Ft

nt

]))
+Var

(
Et

([
Ft

nt

]))
.

Using that:
E

(
Vart

([
Ft

nt

]))
= E

(
µV +ΦV

[
Ft

nt

])
,

Var

(
Et

([
Ft

nt

]))
= Var

(
µE +ΦE

[
Ft

nt

])
= ΦEVar

([
Ft

nt

])
Φ′E ,
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we get:

vec

(
Var

([
Ft

nt

]))
= (I−ΦE ⊗ΦE)

−1

[
µV +ΦVE

([
Ft

nt

])]
.

O.3 Proof of Lemma 1

We have:

rs
t+1 = log

(
Pt+1 +Dt+1

Pt

)
= log(Pt+1 +Dt+1)− log(Pt)+ log(Pt+1)− log(Pt+1)+

log(Dt+1)− log(Dt+1)+ log(Dt)− log(Dt)

= τt+1− τt +gd,t+1 + log
(

1+
Dt+1

Pt+1

)
. (a.26)

Besides:

log[1+Dt+1/Pt+1] = log[1+ exp(−τt+1)]

≈ log[1+ exp(−τ̄){1− (τt+1− τ̄)}]

≈ log[1+ exp(−τ̄)− exp(−τ̄)(τt+1− τ̄)]

≈ log[1+ exp(−τ̄)]+ log
[

1− exp(−τ̄)(τt+1− τ̄)

1+ exp(−τ̄)

]
≈ log[1+ exp(−τ̄)]− τt+1− τ̄

1+ exp(τ̄)
.

Therefore:

rs
t+1 ≈ τt+1− τt +gd,t+1 + log[1+ exp(−τ̄)]− τt+1− τ̄

1+ exp(τ̄)

≈ log[1+ exp(−τ̄)]+
τ̄

1+ exp(τ̄)
+

exp(τ̄)
1+ exp(τ̄)

τt+1− τt +gd,t+1

≈ log[1+ exp(τ̄)]− exp(τ̄)
1+ exp(τ̄)

τ̄ +
exp(τ̄)

1+ exp(τ̄)
τt+1− τt +gd,t+1,

which leads to eq. (a.14).

O.4 Credit Default Swap

The Credit Default Swap (CDS) is the most common credit derivative. It is an agreement between
a protection buyer and a protection seller, whereby the buyer pays a periodic fee in return for a
contingent payment by the seller upon a credit event, such as bankruptcy or failure to pay, of a

6



reference entity. The contingent payment usually replicates the loss incurred by a creditor of the
reference entity in the event of its default (see e.g. Duffie, 1999).

More specifically, a CDS works as follows: the protection buyer pays a regular (annual, semi-
annual or quarterly) premium to the so-called protection seller. These payments end either after a
given period of time (the maturity of the CDS), or at default of the reference entity i from segment j.
In the case of default of this debtor, the protection seller compensates the protection buyer for the
loss the latter would incur upon default of the reference entity (assuming that the latter effectively
holds a bond issued by the reference entity). The CDS spread, also called CDS premium, is
the regular payment paid by the protection buyer (expressed in percentage of the notional and in
annualized terms). Since, in our model, the segments of credit are homogeneous, the CDS spreads
are the same for all entities belonging to the same segment. Let us denote by SCDS

j,t,h the maturity-h
CDS spread of segment- j entities, by q the number of premium payments made per year and by
RR the recovery rate.34

Let d j,i,t be the indicator of default of entity i belonging to segment j: d j,i,t = 1, if entity i is in
default at time t (or before) and d j,i,t = 0, otherwise.35 Note that we have N j,t = Σ

I j
i=1d j,i,t .

At inception of the CDS contract, there is no cash-flow exchanged between both parties and
the CDS spread SCDS

j,t,h is determined so as to equalize the present discounted values of the payments
promised by each of them. If the maturity h is expressed in years, we have:

EQ
t

{
qh

∑
k=1

Λt,t+k(1−RR)(d j,i,t+k−d j,i,t+k−1)

}
︸ ︷︷ ︸

Protection leg

= EQ
t

{
SCDS

j,t,h

q

qh

∑
k=1

Λt,t+k(1−d j,i,t+k)

}
︸ ︷︷ ︸

Premium leg

. (a.27)

By expanding the latter equality, the CDS spread SCDS
j,t,h is easily derived if one can compute

EQ
t (Λt,t+k), EQ

t (Λt,t+kd j,i,t+k) and EQ
t (Λt,t+kd j,i,t+k−1) for all k > 0. By symmetry arguments,

assuming that d j,i,t = 0, we have:

EQ
t (Λt,t+kd j,i,t+k) = EQ

t

(
Λt,t+k

N j,t+k−N j,t

I j−N j,t

)
=

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k)−N j,tEQ
t (Λt,t+k)

)
.

where N j,t = min(N j,t , I j). While exact formulas are available to compute these quantities, we will
proceed under the assumption that the probability of having N j,t > I j is so small that we have, in

34While the model can be extended to accommodate stochastic recovery rates, we restrict our attention to determin-
istic recovery rates as is common practice in pricing exotic credit derivatives.

35In what follows, we augment the filtration Ωt with dt .
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particular, EQ
t (Λt,t+kN j,t+k)≈ EQ

t (Λt,t+kN j,t+k). In this context, we obtain:

EQ
t (Λt,t+kd j,i,t+k)≈

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k)−N j,tEQ
t (Λt,t+k)

)
. (a.28)

Similarly, we obtain:

EQ
t (Λt,t+kd j,i,t+k−1)≈

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k−1)−N j,tEQ
t (Λt,t+k)

)
. (a.29)

Using eqs. (a.28) and (a.29) in eq. (a.27), we get:

SCDS
j,t,h ≈ q(1−RR)

EQ
t

{
∑

qh
k=1 Λt,t+k[N j,t+k−N j,t+k−1]

}
EQ

t

{
∑

qh
k=1 Λt,t+k(I j−N j,t+k)

} .

This expression is the same as that for spreads of credit indexes (eq. 9).

O.5 Maximum Sharpe ratio between dates t and t +h

The maximum Sharpe ratio of an investment realized between dates t to t + h is given by (see
Hansen and Jagannathan, 1991):

Mt,t+h =

√
Vart(Mt,t+h)

EQ
t (Λt,t+h)

.

Using the notation Mt,t+1 = exp(µ0,m +µ ′1,mXt+1 +µ ′2,mXt), we have:

Mt,t+h = exp
(
hµ0,m +µ

′
2,mXt

)
×

exp
(
[µ1,m +µ2,m]

′Xt+1 + · · ·+[µ1,m +µ2,m]
′Xt+h−1 +µ

′
1,mXt+h

)
Therefore:

Mt,t+h =

√
θt,h(2[µ1,m +µ2,m],2µ1,m)−θt,h(µ1,m +µ2,m,µ1,m)2

θt,h(µ1,m +µ2,m,µ1,m)
,

where
θt,h(u,v) = Et(exp(u′Xt+1 + · · ·+u′Xt+h−1 + v′Xt+h)).

When Xt is an affine process, θt,h(u,v) can be computed in closed-form by using recursive formulas
as in Prop. 5 under the physical measure instead of the risk-neutral one and setting the risk-free
short-term rate to 0, i.e. by using η0 = 0 and η1 = 0.
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