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Abstract

This paper organizes, reinterprets and extends the dynamic theory of optimal fiscal policy

with a representative agent by using a generalized version of recursive preferences. I allow

markets to be complete or incomplete and study a policymaker that acts under commitment

or discretion. I highlight the underlying common principles that hide under each particular

economic environment. The resulting theories are interpreted through the excess burden of

taxation, a multiplier, whose evolution gives rise to different notions of “tax-smoothing.”

Variants of a law of motion in terms of the inverse excess burden emerge in each environment

when we allow for richer asset pricing implications through recursive preferences. The basic

policy prescription is simple and intuitive and revolves around interest rate manipulation:

issue new debt and tax more in the future if this can lead to lower interest rates today.
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1 Introduction

The theory of normative fiscal policy is revolving around the use of debt returns and taxes in order

to maximize the utility or the representative household subject to the financing of some exogenous

government expenditures. Environments can differ in terms of the type of debt that is available to

the government (state-contingent or not), or in terms of the pricing of debt. Furthermore, optimal

policy can be designed under different timing protocols that capture for example commitment or

discretion. In all these setups, the government is always facing the tradeoff of taxing today versus

issuing debt and postponing tax distortions to a future date or state. This basic tradeoff is in the

heart of any optimal taxation theory.

This study emphasizes that the underlying principle behind several tax-smoothing environments

is always the same and is captured by the optimal choice of debt. The optimal choice of debt is

always governed by an optimality condition that takes schematically the following form:

(Average) Future Taxes = Φ×Marginal Revenue from Debt (1)

The left-hand side of (1) denotes the marginal cost of issuing new debt. New debt is costly

because it has to be repaid with distortionary taxes, so the left-hand side is always a measure of

the tax burden at a future date or state. The right-hand side of (1) denotes the marginal benefit of

issuing debt. The marginal benefit of the government depends naturally on how much additional

revenue the government is raising. Selling debt for a particular date or state generates revenue

that relaxes the government budget, leading to less taxes today. The shadow value of relaxing the

government budget is captured by the multiplier Φ > 0, which will be called throughout the paper

the excess burden of taxation and will stand as an indicator of tax distortions at the second-best.

Despite its apparent simplicity, equation (1) captures some basic economics. It gives the follow-

ing prescription to the policy-maker: issue more debt and tax more tomorrow, if you can achieve

higher marginal revenue from debt issuance today. Therefore, independent of the particular envi-

ronment, we always know that if the planner can make debt effectively cheaper, he should issue

more debt and tax more in the future.

The crucial element in (1) is the marginal revenue part. This depends on three factors: a)

the stochastic discount factor, which determines the pricing of debt and therefore the dynamic

tradeoffs that the policymaker is facing; b) the market structure, i.e. the degree of state-contingency

of government debt; c) the timing protocol, i.e. the policymaker’s ability to commit to a plan

designed at the initial period versus the other extreme of a policy-maker that maximizes every

period, taking into account the fact that future policymakers will re-optimize without respecting

old promises.

In the current paper I analyze all these three aspects of the marginal revenue channel in (1). To
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illustrate the mechanisms I build a simple economy without capital in the spirit of Lucas and Stokey

(1983) with a representative household that works, pays distortionary labor taxes and invests in

government securities. The government has to finance a stochastic stream of exogenous government

expenditures. I use a generalized version of recursive preferences by allowing an arbitrary concave

certainty equivalent of continuation utility. This allows me to nest in my analysis cases like the

preferences of Epstein and Zin (1989) and Weil (1990) (EZW utility henceforth) and the risk-

sensitive preferences of Hansen et al. (1999) and Tallarini (2000). Recursive preferences bring

additional curvature in the pricing of future risks, leading to a higher market price of risk and to a

better matching of asset pricing facts. This is crucial for designing a theory of taxation and debt

that is based on realistic properties of debt returns. I extend the standard analysis of optimal fiscal

policy and show the unifying perspective that (1) provides by increasing substantially the scope: I

consider complete markets for government debt as in Lucas and Stokey (1983) or the case of non-

state contingent debt, as in Aiyagari et al. (2002). Furthermore, I consider the case of commitment

or the case of discretion, i.e. the case of a Markov-perfect policymaker that does not respect past

promises and maximizes every period taking into account only the natural state variables and the

fact that future policymakers will do the same. This is the notion of Markov-perfect policy in

Krusell et al. (2004) and Klein et al. (2008).

The price manipulation that is inherent in the marginal revenue from debt issuance depends

on the pricing kernel and the commitment protocol. The planner uses the increased sensitivity

of the household towards future risks, and if there is lack of commitment, takes also into account

that the future policymaker will not be constrained by past promises. Depending on the market

structure we may have “averaging” of distortions in the LHS of (1).

Allowing for a general certainty equivalent allows me to discover that the coefficient of absolute

risk aversion with respect to continuation utilities is crucial for the understanding the properties

of the optimal plan. This is a generalization of Karantounias (2018), who only considered the

EZW case in an environment with complete markets. Moreover, the standard results of Aiyagari

et al. (2002), who treat an economy with incomplete markets and commitment and endogenize

the Barro (1979) setup, are modified in a non-trivial way when we turn into recursive utility.

Distortions do not stay any more on average constant. Instead, average distortions increase in bad

times relatively to good times, amplifying therefore the under-insurance results of Aiyagari et al.

(2002). The marginal cost/marginal benefit interpretation of (1) translates to a law of motion in

terms of the inverse excess burden of taxation, that holds in some form or another, in almost all

the environments I consider and for any concave certainty equivalent. And it explains powerfully

the seemingly unrelated economics of the different environments.
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Table 1: Optimal fiscal policy with time-additive utility.

Commitment Discretion
Complete markets Lucas and Stokey (1983) Krusell et al. (2004), Occhino (2012)

Chari et al. (1994) Debortoli and Nunes (2013)

Incomplete markets Aiyagari et al. (2002), Farhi (2010) Martin (2009)

Bhandari et al. (2017) Karantounias (2017)

Table 2: Optimal fiscal policy with recursive utility.

Commitment Discretion
Complete markets Karantounias (2018) : EZW utility This paper

This paper: more general utility

Incomplete markets This paper This paper

1.1 Related literature

The literature is vast. Tables 1 and 2 provide a concise depiction of the state of affairs. A more

detailed description will follow in the future.

2 Economy

Time is discrete and the horizon is infinite. To make my points about the debt revenue channel and

the optimal determination of the excess burden of taxation over states and dates, I use an economy

without capital and a representative household as in Lucas and Stokey (1983) and Aiyagari et al.

(2002). Government expenditures are exogenous, stochastic, provide no utility and live in a finite

set. Let gt denote the spending shock at time t and let gt ≡ (g0, g1, ..., gt) denote the partial history

of shocks up to period t with probability πt(g
t).1 There is no uncertainty at t = 0, so π0(g0) ≡ 1.

The operator E denotes expectation with respect to π throughout the paper.

The resource constraint of the economy reads

ct(g
t) + gt = ht(g

t), (2)

where ct(g
t) consumption and ht(g

t) labor. The notation indicates the measurability of these

functions with respect to the partial history gt. Total endowment of time is normalized to unity,

1Introducing technology shocks is straightforward in this setup.
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so leisure is lt(g
t) = 1− ht(gt).

2.1 Preferences

The household is valuing stochastic streams of consumption and leisure using a recursive utility

criterion of Kreps and Porteus (1978),

Vt = u(ct, 1− ht) + βH−1
(
EtH(Vt+1)

)
, (3)

where u an increasing and concave function of consumption and leisure, H an increasing and

concave function, and A(x) ≡ −H ′′(x)/H ′(x) the coefficient of absolute risk aversion with respect

to risks in continuation utilities. With these preferences, the household exhibits aversion towards

volatility in continuation utilities. Current utility is the sum of period utility u and the certainty

equivalent (CE) of continuation utility, µt ≡ H−1
(
EtH(Vt+1)

)
. To preserve concavity of the utility

recursion, I further assume that the certainty equivalent µt is a concave function of future utilities,

Vt+1.2 Time-additive utility corresponds to risk neutrality with respect to risks in continuation

utilities and corresponds to a linear H, H(x) = x, so the certainty equivalent reduces to expected

future utility, µt = EtVt+1.3

Consider now the stochastic discount factor (SDF) with the preferences in (3). We have

St+1 = βmt+1
uc,t+1

uct
, where mt+1 ≡

H ′(Vt+1)

H ′(µt)
. (4)

Thus, the stochastic discount factor has an extra term mt+1 that represents the additional

marginal utility that the household derives from continuation utility H ′(Vt+1), properly scaled by

the additional utility of the certainty equivalent of future utility, H ′(µt).
4 This marginal utility is

above and beyond the period marginal utility that the household derives from future consumption,

uc,t+1. We will see in the next paragraph that for some cases of the certainty equivalent, mt+1 will

be associated with a change of measure. Clearly, in the time-additive or the deterministic case we

have mt+1 ≡ 1.

The entire analysis throughout the paper is conducted in terms of a concave certainty equivalent

in (3). Whenever I need more concrete illustrations, I will use two parametric examples for H, an

2A sufficient condition for that is that absolute risk tolerance, −H ′(x)/H ′′(x), is a weekly concave function. See
Gollier (2004, p. 322).

3See Backus et al. (2004) for an expansive survey on dynamic preferences over uncertainty.
4For the calculation of the stochastic discount factor we need the derivative ∂Vt/∂ct+1. We have ∂Vt/∂ct+1 =

βπt+1(gt+1|gt)H−1′(EtH(Vt+1))H ′(Vt+1)∂Vt+1

∂ct+1
and ∂Vt

∂ct
= uct. Recall that H−1′(u) = 1/H ′(H−1(u)). Thus,

H−1′(EtH(Vt+1)) = 1/H ′(µt), which delivers (4).
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exponential and a power function.5

Exponential CE. Assume that H is an exponential function,

H(x) = −A−1 exp(−Ax), A > 0. (5)

This function delivers constant absolute risk aversion with respect to future risks, A(x) = A,

and a certainty equivalent and mt+1 that are respectively

µt = −A−1 lnEt exp(−AVt+1) and mt+1 =
exp(−AVt+1)

Et exp(−AVt+1)
. (6)

The exponential case is of particular interest because the random variable mt+1 can be inter-

preted as a conditional likelihood ratio or a change of measure, since mt+1 ≥ 0 and Etmt+1 = 1. We

will refer to the induced probability measure as the continuation-value adjusted measure, πt ·Mt,

where Mt ≡
∏t

i=0 mi,m0 ≡ 1.

The exponential CE is associated with various familiar cases in the literature. First, it corre-

sponds to the risk-sensitive preferences of Hansen et al. (1999) and Tallarini (2000).6 Furthermore,

if we make the assumption that the period utility is logarithmic in the composite good of con-

sumption and leisure, then (5) corresponds also to the Epstein and Zin (1989) and Weil (1990)

(EZW henceforth) preferences with unitary elasticity of substitution.

Power CE (α 6= 1). Assume a power function for H,

H(x) =
x1−α − 1

1− α
, x > 0, (7)

where α > 0 and α 6= 1. In the case of a power CE, I also make the assumption that u > 0,

so that the utility recursion is real-valued. We obviously have A(x) = α/x and the respective CE

and mt+1 take the form

µt =
(
EtV

1−α
t+1

) 1
1−α and mt+1 =

(Vt+1

µt

)−α
= κ

− α
1−α

t+1 , (8)

5Both of these cases furnish a concave certainty equivalent, since absolute risk tolerance is either constant or
linear (see footnote 2).

6There is an alternative interpretation of the exponential CE in terms of the multiplier preferences of Hansen
and Sargent (2001) which are designed to capture fear of model misspecification, and the household’s desire for
robust decision rules.

6



where κt+1 ≡
V 1−α
t+1

EtV
1−α
t+1

> 0. Note that Etκt+1 = 1, so κt+1 defines again a change of measure that

applies a continuation-value adjustment, with an induced measure πt ·Kt, Kt ≡
∏t

i=0 κi, κ0 ≡ 1.

So when aversion towards future risk is expressed with a power function, mt+1 corresponds to

a conditional likelihood ratio raised in a particular power. Besides the requirement that u > 0

(and the typical monotonicity and concavity assumptions for period utility), I make no further

assumptions.7 If we restrict the period utility u to also take a power form, then we have the

case of EZW utility which differentiates between static risk aversion an intertemporal elasticity of

substitution.8

Logarithmic CE, (α = 1). In the logarithmic case ofH(x) = ln(x), we have µt = exp(Et lnVt+1).

We can define vt ≡ lnVt and express the utility recursion as

vt = ln[ut + β exp(Etvt+1)]. (9)

Similarly, the adjustment to the stochastic discount factor takes the form

mt+1 =
( Vt+1

exp(Et lnVt+1)

)−1

= exp
(
−(vt+1 − Etvt+1)

)
, (10)

so Et lnmt+1 = 0.9

2.2 Market structure and government policy

Complete markets. Consider now an environment with complete markets as in Lucas and

Stokey (1983). There are no lump-sum taxes and the government resorts to a linear labor tax

τt(g
t) in order to finance government expenditures. The representative household consumes, works

at the pre-tax wage rate wt(g
t), and trades in a full set of Arrow securities with the government.

These securities have price pt(gt+1, g
t) and promise one unit of consumption if the state next period

is gt+1 and zero otherwise. The household maximizes utility (3) subject to the budget constraint,

ct(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1) = (1− τt(gt))wt(gt)ht(gt) + bt(g

t), (11)

7The case of u < 0 can be treated in a similar way by using the function H(x) = − (−x)1+γ
1+γ , x < 0 for γ > 0. We

have µt = −
(
Et(−Vt+1)1+γ

) 1
1+γ and mt+1 = (−Vt+1)

γ

(−µt)γ = κ
γ

1+γ

t+1 , where κt+1 ≡ (−Vt+1)
1+γ

Et(−Vt+1)1+γ
> 0, a change of measure

again since Etκt+1 = 1.
8See Swanson (2018) for an elaborate analysis of the effect of the labor margin on the ability to take gambles

with the recursive preferences in (7).
9Note that mt+1 cannot be interpreted in that case as a conditional likelihood ratio since Etmt+1 =

Et exp(lnmt+1) > exp(Et lnmt+1) = 1, due to the convexity of the exponential function.
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and the feasibility conditions on consumption and labor, ct ≥ 0, ht ∈ [0, 1]. The household

is also subject to a typical no-Ponzi game condition and starts with an initial debt b0. The

government’s dynamic budget constraint reads

bt(g
t) = τt(g

t)wt(g
t)ht(g

t)− gt +
∑
gt+1

pt(gt+1, g
t)bt+1(gt+1) (12)

Incomplete markets. Consider now the exactly same environment with the exception of the

market structure. As in Aiyagari et al. (2002), assume that the government cannot issue state-

contingent debt. Instead, it issues a risk-free discount bond, which promises one unit of consump-

tion next period for each realization of the shock and trades at price qt(g
t). The household’s budget

constraint reads

ct(g
t) + qt(g

t)bt(g
t) = (1− τt(gt))wt(gt)ht(gt) + bt−1(gt−1). (13)

Note that bt(g
t) indicates now the holdings of government debt at the beginning of period

t + 1, for each realization of the shock at t + 1. The level of initial debt is b−1 and, as before,

ct ≥ 0, ht ∈ [0, 1]. The household is also subject to individual borrowing constraints that will be

assumed to be non-binding, so that we focus on an interior solution of the household’s problem.

Similarly, the government’s budget constraint is

bt−1(gt−1) = τt(g
t)wt(g

t)ht(g
t)− gt + qt(g

t)bt(g
t). (14)

2.3 Equilibrium and optimality conditions

The government policy is summarized by a stochastic process for taxes and debt {τ, b}, where debt

is either state-contingent or not.

Definition 1. (“Complete markets”) A competitive equilibrium with taxes is a policy {τ, b}, prices

{p, w} and an allocation {c, h, b} such that a) Given {τ} and {p, w}, {c, h, b} solves the household’s

maximization problem; b) given {w}, firms maximize profits; c) markets clear, that is, the resource

constraint (2) holds.

Definition 2. (“Incomplete markets”) A competitive equilibrium with taxes is a policy {τ, b},
prices {q, w} and an allocation {c, h, b} such that a) Given {τ} and {q, w}, {c, h, b} solves the

household’s maximization problem; b) given {w}, firms maximize profits; c) markets clear, that is,

the resource constraint (2) holds.
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Note that given the household’s budget and the resource constraint (2) the government’s budget

constraint always holds, which is why we did not include it in the definition of the equilibrium.

Optimality conditions. Given the linear production function and the competitive labor mar-

kets, profit maximization implies wt(g
t) = 1,∀t, gt. Furthermore, for both market structures, the

household’s labor supply condition equalizes the marginal rates of substitution between consump-

tion and leisure to the after-tax wage,

ul(g
t)

uc(gt)
= 1− τt(gt). (15)

In the complete market case, the portfolio of Arrow securities is determined by the condition

pt(gt+1, g
t) = πt+1(gt+1|gt)St+1(gt+1), (16)

where St+1 the SDF in (4), which we analyzed in the previous section. With non-contingent

debt we have instead

qt(g
t) =

∑
gt+1

πt+1(gt+1|gt)St+1(gt+1). (17)

These conditions, together with the resource constraint (2), the household’s budget and the

respective transversality conditions characterize fully the competitive equilibrium.

Revenue from debt issuance. As a prelude to the policy problem, consider the main objective

of a benevolent planner that chooses taxes so that the utility of the representative household is

maximized. What matters in this decision is the current tax rate versus the revenue that the

planner can raise by issuing new debt. In the complete market setup, this revenue is captured

by the market value of the government portfolio,
∑

gt+1
pt(gt+1, g

t)bt+1(gt+1). With non-contingent

debt, the proper object is qt(g
t)bt(g

t). The planner is a large player that takes into account how

his decisions will affect debt revenue through both the direct effects of larger debt positions, and

the indirect pricing effects. For both market structures, the revenue raised will depend a) on

the SDF St+1, which entails continuation utilities, as stressed by Karantounias (2018) and b)

on the timing protocol, that is, on assumptions on the commitment ability of the policymaker.

Different commitment protocols lead to different price manipulation incentives through the SDF.

For example, in the case of no commitment, the current policymaker has to take into account that

the future policy maker will not be bound from past promises, a fact that will change the revenue
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that the current policy maker can raise by issuing debt.

3 Optimal policy with complete markets under commit-

ment

Consider now a policymaker that chooses tax rates to maximize that utility of the representative

household at t = 0 and commits to this policy. So the planner chooses a stochastic process for τ and

b subject to the resource constraint, the budget constraints and the optimality conditions coming

from the competitive equilibrium. I follow the primal approach of Lucas and Stokey (1983) and

eliminate the tax rate and Arrow securities prices from (11) by using the optimality conditions (15)

and (16). This allows me to express the budget constraint of the household in terms of allocations

{c, h, b} and continuation utilities {Vt+1},

uctbt = uctct − ultht + βEtmt+1uc,t+1bt+1 (18)

where continuation utilities Vt+1 follow recursion (3) and affect (18) throughmt+1 = H ′(Vt+1)/H ′(µt),

the extra term with recursive preferences that prices assets. Equation (18) denotes the dynamic

implementability constraint, that is, the constraint that allocations have to satisfy so that they

are implemented as a competitive equilibrium with taxes. In all environments I consider, the term

ucc−ulh denotes consumption net of after-tax income in marginal utility units. This term is equal

in equilibrium to the government surplus in marginal utility units. Thus, we may think of (18) as

the government budget (12).

Recursive formulation. I follow Kydland and Prescott (1980) and use a pseudo-state variable,

whose initial value is chosen optimally, in order to capture the commitment of the planner to his

past promises.10 The environment here is a generalization of Karantounias (2018). Assume that

shocks are Markov with transition density π(g′|g). Let zt ≡ uctbt denote debt in marginal utility

units. Let the value of the commitment problem from period one onward be denoted as V (z, g),

when the state at t = 1 is (z, g). The Bellman equation takes the form

V (z, g) = max
c,h,z′

g′
u(c, 1− h) + βH−1

(∑
g′

π(g′|g)H
(
V (zg′ , g

′)
))

subject to

10The initial period problem that determines the optimal value of the state variable both in the complete and
the incomplete markets case is stated in the Appendix.
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z = uc(c, 1− h)c− ul(c, 1− h)h+ β
∑
g′

π(g′|g)m′g′z
′
g′ (19)

c+ g = h (20)

c ≥ 0, h ∈ [0, 1], z′g′ ∈ Z(g′) (21)

where

m′g′ =
H ′(V (z′g′ , g

′))

H ′(µ)
, and µ = H−1

(∑
g′

π(g′|g)H
(
V (z′g′ , g

′)
))
.

Thus, the planner is effectively choosing taxes and state-contingent debt subject to government

budget constraint (19) and the resource constraint (20).

Analysis. Let Φ ≥ 0 denote the multiplier on the implementability constraint (19). I will call

it the excess burden of taxation and will be the main object of interest throughout the different

market environments and policy protocols that I consider. Note that Φ = 0 when lump-sum taxes

are available. Let also R({z′g′}g′) ≡
∑

g′ π(g′|g)m′g′z
′
g′ denote the revenue from debt issuance, in

marginal utility units. Then the optimality condition with respect to debt takes the form

−Vz(zg′ , g′)︸ ︷︷ ︸
MC: Φ′

g′

= Φ · [1− Vz(z′g′ , g′)η′g]︸ ︷︷ ︸
∂R
∂z′
g′

, (22)

where

η′g′ ≡ A
(
V (z′g′ , g

′)
)
z′g′ − A(µ)

∑
g′

π(g′|g)m′g′z
′
g′ . (23)

The optimality condition with respect to debt takes the marginal benefit/ marginal cost form (1)

that I stressed in the introduction. The left-hand denotes the welfare cost of new debt, since it has

to be repaid with distortionary taxes. Note from the envelope condition that Vz(z, g) = −Φ < 0,

so the left-hand side is equal to the future excess burden of taxation at g′, Φ′g′ . The right-hand

side denotes the shadow value of the marginal revenue that the planner is raising. By issuing

more debt, the planner is raising more revenue, but he has also to see how additional debt affects

equilibrium prices through continuation values. An increase in debt reduces continuation values,

which increases the price of an Arrow security at g′ due to the aversion to utility volatility. However,
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prices are interconnected through the certainty equivalent in (4), so the planner has to take into

account how the change in z′g affects the pricing of the rest of the portfolio of state-contingent debt.

The total pricing effect of continuation values is captured by the variable η′g′ , which denotes the

relative debt position in marginal utility units of the government, adjusted properly by coefficient

of absolute risk aversion at V ′g′ , A(V ′g′), relative to the total value of the portfolio of Arrow claims,

adjusted by absolute risk aversion at the certainty equivalent, A(µ). We can collect terms and

rewrite (22) in terms of the inverse of the excess burden of taxation. The following proposition

summarizes the results.

Proposition 1. (“Excess burden and optimal tax with complete markets under commitment”)

• Turn into sequence notation and assume that Φt > 0. The inverse of the excess burden

follows the law of motion

1

Φt+1

=
1

Φt

− ηt+1, t ≥ 0 (24)

where ηt+1 ≡ A(Vt+1)zt+1 − A(µt)Etmt+1zt+1, the relative debt position in marginal utility

units.

– Assume the exponential CE (5) with mt+1 given in (6). Then, ηt+1 = A · [V −1
t+1zt+1 −

Etmt+1zt+1], so 1/Φt is a martingale with respect to the continuation-value adjusted

measure πt ·Mt, since Etmt+1ηt+1 = 0.

– Assume the power CE (7), α 6= 1 with mt+1 given in (8). Then, ηt+1 = α · [V −1
t+1zt+1 −

Etκt+1V
−1
t+1zt+1], so 1/Φt is a martingale with respect to πt ·Kt, since Etκt+1ηt+1 = 0.

– Assume a logarithmic CE, α = 1 with mt+1 given in (10). Then, ηt+1 = V −1
t+1zt+1 −

EtV
−1
t+1zt+1, so 1/Φt is a martingale with respect to the physical measure π, since Etηt+1 =

0.

• The optimal tax rate at t ≥ 1 takes the form

τt =
Φt(εcc,t + εch,t + εhh,t + εhc,t)

1 + Φt(1 + εhh,t + εhc,t)
, (25)

where εcc ≡ −uccc/uc, εch ≡ uclh/uc and εhh ≡ −ullh/ul, εhc ≡ uclc/ul, the respective own and

cross elasticities of the period marginal utility of consumption and the marginal disutility of

labor.

Proof. To derive (24), collect terms that involve the derivative of the value function Vz in (22), and

use the envelope condition Vz(z, g) = −Φ to get Φt+1 = Φt
1−ηt+1Φt

. When Φt = 0, the excess burden
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remains at zero for every state or date afterwards. Otherwise, we can invert and get the desired

law of motion. The derivation of the relative debt position for the power case deserves a comment.

Note that ηt+1 = α · [V −1
t+1zt+1 − µ−1

t Et

(
Vt+1

µt

)−α
zt+1] = α · [V −1

t+1zt+1 −Et
(
Vt+1

µt

)1−α
V −1
t+1zt+1], which

delivers the expression in the proposition since κt+1 = V 1−α
t+1 /µ

1−α
t . For the derivation of (25) see

Karantounias (2018).

Comments. The law of motion (24) provides a generalization of the analysis in Karantounias

(2018) for a general certainty equivalent. It uncovers the crucial role that absolute risk aversion

A(x) plays in the manipulation of state-contingent prices, which is a novel feature of the analysis.

Furthermore, (24) shows that the law of motion in terms of the inverse excess burden of taxation is

a fundamental feature of the analysis, that depends on neither the period utility nor the particular

parametric specification of the certainty equivalent. This feature of the analysis was not clear with

EZW utility.

The increment ηt+1 in the law of motion (24) and the respective dynamics of the excess burden

depends obviously on the certainty equivalent specification. Note that Φt is a submartingale with

respect to the proper measures for the three examples that we considered, so we have the presence

of positive drifts, generalizing again Karantounias (2018). We typically expect that ηt+1 > 0 for

good shocks (the government issues against them relatively high debt) and ηt+1 < 0 for bad shocks

(high g is hedged with relatively lower positions) , leading therefore to higher taxes in good times

and lower taxes in bad times.11

4 Optimal policy with incomplete markets under commit-

ment

Consider now our second market structure which features non-contingent debt as in Aiyagari et al.

(2002). Price manipulation in that case means that the planner is trying to affect “average”

marginal utilities, as we can see from the Euler equation (17). So the richer SDF will force the

planner to consider how continuation values affect the average price of debt over states. And the

respective marginal revenue from debt issuance will be contrasted to the average tax distortions

next period.

4.1 Preliminaries

To set up the commitment problem with incomplete markets, we need to have a planner who

realizes how his decisions affects his promises across states. For that reason, we express the utility

11See Karantounias (2018) for a thorough quantitative analysis.
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recursion (3) in terms of the certainty equivalent, before the realization of the shock at time t:

µt−1 = H−1
(
Et−1H

(
u(ct, 1− ht) + βµt

))
. (26)

Following the primal approach, use the labor supply condition (15) and the Euler equation (17)

to eliminate tax rates and interest rates from the household’s budget constraint (13). This leads

to the following implementability constraint with incomplete markets,

uctbt−1 = uctct − ultht + βEtmt+1uc,t+1bt. (27)

Define Bt ≡ Etmt+1uc,t+1bt, which is now a measure of debt in average marginal utility units.

This variable captures the planner’s past promises of period marginal utility and continuation

values across states and serves as a state variable in a recursive formulation of the problem. The

implementability constraint (27) becomes then

uct
Et−1mtuct

Bt−1 = uctct − ultht + βBt. (28)

I also assume that the planner is subject to some upper (lower) debt (asset) limits, which can

be stricter than the natural borrowing limits. I follow Farhi (2010) and express the debt limits

directly in terms of the variable Bt, so Bt ≤ Bt ≤ B̄t.

For future reference, define the random variable xt ≡ uct
Et−1mtuct

. In a world with time-additive

utility, this variable will capture the risk-adjusted measure, since it adjusts for the household’s

aversion to consumption volatility. In a world with recursive utility, we can define one more

random variable, nt ≡ mt · xt ≥ 0. We obviously have Et−1nt = 1, so nt is a change of measure

with respect to the physical measure π, and it entails an adjustment for consumption risk (through

xt) and an adjustment for continuation-value risk through mt.
12 If we followed the terminology

of Bansal and Yaron (2004) and Hansen et al. (2008), these adjustments would correspond to

short- (xt) and long-run risk (mt). The induced measure πt ·Nt, Nt ≡
∏t

i ni, is instrumental in our

analysis of tax smoothing with incomplete markets.13

12Note that we obviously have nt = St/Et−1St, where St the stochastic discount factor in (4).
13When mt can be interpreted as a change of measure with respect to π, (as in the exponential case (5)), then

Emt−1xt = 1, where Em refers to the expectation with respect to m. In that case, xt would be a change of measure
with respect to the induced continuation-value adjusted measure πt ·Mt, so nt would be a product of two conditional
likelihood ratios.
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4.2 Recursive formulation

Let now the shocks be Markov. Let W (B−, g−) denote the optimal value of the certainty equivalent,

when the state is (B−, g−), where the underscore “ ” denotes previous period. The Bellman

equation takes the following form:

W (B−, g−) = max
cg ,hg ,Bg

H−1
(∑

g

π(g|g−)H
(
u(cg, 1− hg) + βW (Bg, g)

))
subject to

uc(cg, 1− hg)∑
g π(g|g−)mguc(cg, 1− hg)

B− = uc(c, 1− hg)cg − ul(cg, 1− hg)hg + βBg,∀g (29)

cg + g = hg,∀g (30)

cg ≥ 0, hg ∈ [0, 1], Bg ≤ Bg ≤ B̄g, ∀g, (31)

where mg is shorthand for the continuation-value adjustment in the SDF,

mg =
H ′
(
u(cg, 1− hg) + βW (Bg, g)

)
H ′
(
H−1

(∑
g π(g|g−)H(u(cg, 1− hg) + βW (Bg, g))

)) ,∀g. (32)

Given the timing of the problem, the planner is choosing now state-contingent consumption,

labor and “debt”, (cg, hg, Bg). This is the reason why we have an implementability and resource

constraint for each realization of the shock g. Note also that in the case of independent shocks,

we would not need to keep track of g−. As in the complete markets case, value functions show up

in the constraints through the determination of the price of risk-free debt.

4.3 Analysis

Consider first the optimality condition with respect to Bg, which will determine the optimal second-

best distortions over states and dates. In the Appendix I show that this takes the form

−WB(Bg, g)︸ ︷︷ ︸
MC: average future excess burden

= Φg +
(∑

g

π(g|g−)ngΦg

)
︸ ︷︷ ︸

value of relaxing IC across g

·
(
−WB(Bg, g)

)
· ξgb−︸ ︷︷ ︸

change in revenue due to ∂W

, (33)

where, recalling the definition of the state variable B, b− stands for non-contingent debt in the

beginning of the period, b− = B−/
∑

g π(g|g−)mguc(cg, 1−hg),Φg stands for the (scaled) multiplier
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on the implementability constraint (29), ng stands for the consumption and continuation-value

adjusted measure, ng = mg · xg, and

ξg ≡ A(Vg)uc(cg, 1− hg)− A(µ−)
∑
g

π(g|g−)mguc(cg, 1− hg), (34)

the relative marginal utility position at g, adjusted properly by absolute risk aversion at Vg and

at the respective certainty equivalent at the beginning of the period, µ−.14

Equation (33) takes the same form as (1). The left-hand side denotes again the cost of issu-

ing debt that has to be repaid with distortionary taxes. From the envelope condition we have

WB(B−, g−) = −
∑

g π(g|g−)ngΦg, so the left-hand side denotes future average distortions, since

in contrast to (22), debt is now non-contingent. The right-hand side of (33) has two parts: the

first part denotes the relaxation of the government budget constraint at g which bears shadow

benefit Φg. This is coming from new debt issuance, without taking into account any price-

manipulation through continuation values. But increasing debt reduces utility and increases there-

fore prices(−WB > 0), since it affects “average” marginal utility. The benefit or cost of this action

in terms of revenue will depend on the relative marginal utility (adjusted by absolute risk aver-

sion), ξg, times the amount of non-contingent debt b−. Note that since debt is not state-contingent

and since the planner operates under commitment, his marginal utility and continuation value

promises are bound by the average value of this promises he is committing to. Thus, any price

change through Bg affects the implementability contraints at g̃ 6= g. This is why the price effect of

continuation values in (33) is multiplied by the shadow valuation of relaxing the budget constraints

across shocks g,
∑

g π(g|g−)ngΦg.

After providing this interpretation, we can use sequential notation and finally derive an inverse

law of motion for the excess burden of taxation.

Proposition 2. (“Excess burden of taxation with incomplete markets and commitment”)

• The excess burden of taxation follows the law of motion

1

Etnt+1Φt+1

=
1

Φt

− Et−1ntΦt

Φt

· ξtbt−1, (35)

where ξt ≡ A(Vt)uct − A(µt−1)Et−1mtuct.

• (“Drifts”) Assume the planner issues debt, bt−1 > 0. Then if ξt > 0, the average excess

burden increases, Etnt+1Φt+1 > Φt. If ξt < 0, then the average excess burden decreases,

14 Vg is shorthand for Vg = u(cg, 1− hg) + βW (Bg, g).
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Etnt+1Φt+1 < Φt.

• Examples:

– Assume the exponential CE in (5). Then ξt = A[uct − Et−1mtuct], so ξt takes positive

and negative values with Et−1mtξt = 0. If also period utility is linear in consumption,

then ξt ≡ 0,∀t, nt = mt, and Etmt+1Φt+1 = Φt.

– Assume the power CE in (7). Then ξt = α[V −1
t uct −Et−1κtV

−1
t uct], so ξt takes positive

and negative values with Et−1κtξt = 0.

– Assume the logarithmic CE. Then ξt = V −1
t uct − Et−1V

−1
t uct, so ξt takes positive and

negative values with Et−1ξt = 0.

Proposition 2 furnishes a law of motion that involves the inverse average excess burden of

taxation. Note that the tax-smoothing results of Aiyagari et al. (2002), who provide the foundation

of the Barro (1979) analysis, are nested in (35). To see that, note that with time-additive utility

we have mt ≡ 1, ξt ≡ 0 and nt = xt = uct/Et−1uct. Then (35) becomes Etxt+1Φt+1 = Φt,

which is the martingale result of Aiyagari et al. (2002). This result is still in the general form

of (1), since it equates “average” future tax distortions with the benefit of relaxing the current

government budget. The marginal revenue part of the analysis is elementary, since with time-

additive utility and commitment the price manipulation we have been highlighting is absent. Note

furthermore the similarity of the law of motion in (35) to the respective law of motion with

complete markets in (24), taking into account the proper modifications for market incompleteness.

Instead of the future excess burden in (24) we have the average excess burden in (35). With

market completeness the term Et−1ntΦt/Φt in (35) would drop since the planner is not bound to

keep track of his promises across states. And the relative debt position in marginal utility units

(adjusted by absolute risk aversion) ηt in (24), becomes naturally with incomplete markets the

relative marginal utility (adjusted by absolute risk aversion) ξt times non-state contingent debt,

bt−1.

Proposition 3. (“Optimal tax rate with incomplete markets under commitment”) The optimal

tax rate at t ≥ 1 takes the form

τt =
Φt(εcc,t + εch,t + εhh,t + εhc,t)− (εcc,t + εhc,t)

[
Φt − Et−1ntΦt

]
bt−1

ct

1− (Et−1ntΦt)ξtbt−1 + Φt(1 + εhh,t + εhc,t)− εhc,t
[
Φt − Et−1ntΦt

]
bt−1

ct

(36)

By using the law of motion (35), (36) can be rewritten as function of the “average” excess

burden of taxation,
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τt =
Etnt+1Φt+1(εcc,t + εch,t + εhh,t + εhc,t)− (εcc,t + εhc,t)

[
Etnt+1Φt+1 − 1

1/(Et−1ntΦt)−ξtbt−1

]
bt−1

ct

1 + Etnt+1Φt+1(1 + εhh,t + εhc,t)− εhc,t
[
Etnt+1Φt+1 − 1

1/(Et−1ntΦt)−ξtbt−1

]
bt−1

ct

(37)

Proof. See the Appendix for the calculations behind propositions 2 and 3. To get (37) I di-

vided each term of (36) over 1 − (Et−1ntΦt)ξtbt−1 and used that fact that Etnt+1Φt+1 = Φt/(1 −
(Et−1ntΦt)ξtbt−1) from (35).

Tax rate in Aiyagari et al. (2002). Note that in the time-additive case of Aiyagari et al.

(2002) the optimal tax rate (36) simplifies to

τt =
Φt(εcc,t + εch,t + εhh,t + εhc,t)− (εcc,t + εhc,t)

[
Φt − Φt−1

]
bt−1

ct

1 + Φt(1 + εhh,t + εhc,t)− εhc,t
[
Φt − Φt−1

]
bt−1

ct

, (38)

where I used the fact that Et−1xtΦt = Φt−1. Note that this formula reflects two channels: the

time-varying excess burden of taxation (due to market incompleteness) and the costs and benefits

of manipulation of legacy debt through marginal utility under commitment (this is the term that

entails the difference Φt − Φt−1). Note that if we had state-contingent debt, this term would be

absent (even with recursive utility). It will also be modified in the case without commitment (since

there is no keeping of past promises).

Amplification. The law of motion (35) shows that when the planner issues debt, bt−1 > 0, then

the relative marginal utility position is crucial for the allocation of tax distortions. For instance,

if marginal utility is relatively high, in the sense that A(Vt)uct > A(µt−1)Et−1mtuct so that ξt > 0,

then average tax distortions increase, Etnt+1Φt+1 > Φt. If we assume constant absolute risk

aversion, A(x) = A, this statement depends only on marginal utility. We typically expect that

marginal utility is high when government expenditures are high since they reduce consumption. So

the planner uses the continuation value channel to amplify average tax distortions in bad states,

and does the opposite in good states. This is an amplification of the mechanisms in Aiyagari et al.

(2002). Note furthermore that this is in contrast to the analysis of proposition 1 and the results

of Karantounias (2018). The relative debt position in marginal utility units ηt+1 matters with

complete markets. The sign of this object is typically dominated from the actual debt position of

the government which varies across good and bad shocks when we have state-contingent debt.15

The fiscal hedging of the government commands issuing debt against good states (low g) and have

less debt (more assets) fot he bad states with high g. This leads to having a positive ηt+1 in

good times and a negative in bad times, and thus high tax rates in good times versus bad times,

15See the numerical analysis in Karantounias (2018).
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amplifying essentially the mechanisms of Lucas and Stokey (1983). Effectively, the difference is

coming from manipulating the prices of state-contingent debt adjusted by marginal utility, versus

the manipulation of average marginal utility that takes place with incomplete markets. It is obvious

that none of these marginal revenue effects takes place when we are in the time-additive case.

5 The case of no commitment

Consider now the same problem where before, when the government cannot commit to its promises.

I am assuming a Markov-perfect planner that keeps track only of the payoff-relevant state variables

of debt and the exogenous shock, (b, g). The new element that enters the problem is the fact that

the planner is taking into account that the future policymaker will choose optimally from next

period’s perspective. This has two implications: a) the planner will try to devalue current debt

(“legacy” debt), which happens only in the first-period of the commitment problem and is the

source of the time-inconsistency in this setup b) the planner is going to take into account how

his actions affect the actions of the future policymaker. In particular, the planner takes into

account that issuing more debt for the future is going to make the future policy maker tax more,

and therefore reduce consumption and interest rates, by an increase of marginal utility. Thus,

given the lack of commitment, there is an incentive to issue more debt for tomorrow, i.e postpone

taxation, because government debt becomes cheaper to issue.

5.1 A quick digression: time-additive utility

In order to make the mechanism clear, consider an environment with time-additive utility and

complete markets. This would be a version of Krusell et al. (2004) with shocks and complete

markets, or Debortoli and Nunes (2013) and Occhino (2012) with stochastic exogenous government

spending shocks.

Let C,H be the policy functions of the planner next period, as functions of the state (b, g). The

problem of the time-consistent planner takes the following form:

V (b, s) = max
c,h,b′

g′
u(c, 1− h) + β

∑
g′

π(g′|g)V (b′g′ , g
′)

subject to
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uc(c, 1− h)b = uc(c, 1− h)c− ul(c, 1− h)h+ β
∑
g′

π(g′|g)uc(C(b′g′ , g′), 1−H(b′g′ , g
′))b′g′

c+ g = h

At the MPE we require that c = C, h = H. Assign again the multipliers Φ and λ on the

implementability constraint and the resource constraint respectively. We have the following first-

order necessary conditions for an interior solution, where we defined Ω(c, h) ≡ uc(c, 1 − h)c −
ul(c, 1− h)h and Ωi, i = c, h the respective partial derivatives.

c : uc + Φ[Ωc − uccb] = λ

h : ul − Φ[Ωh + uclb] = λ

b′g′ : π(g′|g)Vb(b
′
g′ , g

′) + Φ
∂ω

∂b′g′
= 0

The optimality conditions with respect to c, h take now into account the devaluing of inherited

debt.

Note that the optimality condition with respect to new debt has as usual the same interpre-

tation as (1). Consider now the determination of marginal revenue in an environment without

commitment.

∂ω

∂b′g′
= π(g′|g)

[
u′c + (u′cc − u′cl)Cbb′g′︸ ︷︷ ︸

MU pricing effect

]

I have used the fact that Cb = Hb. Primes ′ denote next period. The first term in the marginal

revenue is only the increase that is coming from a higher position, given prices. This is the only

effect with time-additive utility and commitment. But a Markov-perfect planner will take into

account that the future planner will reduce consumption in the future and increase tax rates in

order to pay back the issued debt. This will increase marginal utility and increase therefore the

price of debt sold and thus, the revenue to the government. This effects are in u′ccCb, where it is

assumed that Cb < 0 (this is so in a smooth equilibrium with exogenous g). Obviously if b′g′ > 0,

that is, if the planner issues debt against g′, then the pricing effect of marginal utility is positive.

Consider again the first-order condition with respect to debt. This becomes

−Vb(bg′ , g′) = Φ
[
u′c + (u′cc − u′cl)Cbb′g′

]
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Use now the envelope condition Vb = −Φuc and simplify to get

Φ′g′ = Φ
[
1 +

u′cc − u′cl
u′c

Cbb′g′
]

So, the government increases distortions for the future because it is cheaper to issue debt for

next period/state. Note that as long as b′g′ > 0, and Cb ≤ 0, we have Φ′g′ ≥ Φ,∀g. In sequential

notation, the law of motion of the excess burden becomes

Φt+1 = Φt

[
1 +

ucc,t+1 − ucl,t+1

uc,t+1

Cb(bt+1, gt+1)bt+1

]
5.2 Recursive utility and complete markets

Consider now the same problem with recursive utility. In addition to the previous analysis, the

planner will manipulate equilibrium prices through the continuation value channel.

The Bellman equation takes the form

V (b, g) = max
c,h,b′

g′
u(c, 1− h) + βH−1

(∑
g′

π(g′|g)H(V (b′g′ , g
′))
)

subject to

uc(c, 1− h)b = uc(c, 1− h)c− ul(c, 1− h)h+ β
∑
g′

π(g′|g)m′g′uc(C(b′g′ , g′), 1−H(b′g′ , g
′))b′g′

c+ g = h

where

m′g′ ≡
H ′(V (b′g′ , g

′))

H ′(µ)
, µ ≡ H−1

(∑
g′

π(g′|g)H(V (b′g′ , g
′))
)

Assign again multipliers Φ and λ respectively. The first-order conditions with respect to (c, h)

are the same as in the time-additive case. The first-order condition with respect to b′g′ becomes
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−π(g′|g)m′g′Vb(b
′
g′ , g

′) = Φ
∂ω

∂b′g′
,

taking again the familiar (by now) form of (1). The marginal revenue now will reflect two channels:

the continuation value channel (that is present also under commitment but is not present in the

time-additive case) and the marginal utility channel (that is present in the standard case when a

planner cannot commit):

∂ω

∂b′g′
= π(g′|g)m′g′

[
Vb(bg′ , g

′)ν ′g′ + (u′cc − u′cl)Cbb′g′ + u′c
]

where

ν ′g′ ≡ −
[
A(V (b′g′ , g

′))u′cb
′
g′ − A(µ)ω

]
The marginal revenue from state-contingent debt captures the channel I mentioned before. Note

that the relative debt position depends again on the value of debt in marginal utility units scaled

by the coefficient of absolute risk aversion, but takes into account that policy will be optimal from

next period onward. Going to the optimal debt issuance equation, and using again the envelope

condition Vb = −Φuc, we finally get

Φ′g′ =
Φ

1 + Φν ′g′

[
1 +

u′cc − u′cl
u′c

Cbb′g′
]

Taking inverses, this law of motion can also be written as

1

Φ′g′
=
[
1 +

u′cc − u′cl
u′c

Cbb′g′
]−1[ 1

Φ
+ ν ′g′

]
.

We can summarize the result in terms of a proposition:

Proposition 4. (“Complete markets without commitment”) The excess burden of taxation follows

,

1

Φt+1

= [1 +
ucc,t+1 − ucl,t+1

uc,t+1

Cbbt+1]−1
[ 1

Φt

+ νt+1

]
(39)
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with νt+1 = −[A(Vt+1)uc,t+1bt+1 − A(µt) · Etmt+1uc,t+1bt+1].

Note that the marginal utility channel always commands to put more distortions for the future,

as long there is issuance of debt, b′g′ > 0. On the other hand, the continuation value channel

commands more distortions when ν ′g′ < 0 (high debt positions) and less distortions when ν ′g′ > 0

(low debt positions). So if the planner insures against the bad times wiht low debt positions, then

we have two opposing incentives in bad times: tax less to increase prices through the value channel

because you have a negative relative position, but tax more in order to increase prices, because

your gross position is positive (coming from the Markov-perfect assumption). In good times, the

two incentives align with each other. So it seems that there will be more taxation in good times

(relative to MPE and time-additive utility) and less taxation (relative to MPE with time-additive

utility) in bad times.

5.3 Recursive utility and incomplete markets

Consider now the case of incomplete markets with recursive utility and lack of commitment. To

see the analysis in the time-additive case consult Karantounias (2017). In contrast to the case

of incomplete markets and commitment, we do not need to formulate the problem before the

realization of uncertainty at time t (which was necessary in order to capture the promises across

states of the planner).

Let (b−, g) denote the state variable, where b− corresponds to the state non-contingent debt at

the beginning of the period. Let C and H denote the consumption and labor policy function of

the future policy maker. Let V (b−, g) denote the value function at (b−, g). The Bellman equation

takes the form

V (b−, g) = max
c≥0,h∈[0,1],b∈B

u(c, 1− h) + βH−1
(∑
g′

π(g′|g)H(V (b, g′))
)

subject to

uc(c, 1− h)b− = uc(c, 1− h)c− ul(c, 1− h)h+ β
(∑

g′

π(g′|g)m′g′uc(C(b, g′), 1−H(b, g′))
)
b

c+ g = h

where m′g′ ≡
H′
(
V (b,g′))

H′
(
H−1
(∑

g′ π(g′|g)H(V (b,g′))
)) . The optimal policy functions will be functions of (b−, g),

so
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c = c(b−, g)

h = h(b−, g)

b = b(b−, g)

The Markov-perfect time-consistency requirement is that c(b−, g) = C(b−, g), h(b−, g) = H(b−, g)

∀(b−, g) in the state space. Assign multipliers Φ and λ on the implementability and resource con-

straint respectively and define the revenue (in marginal utility units) as

R(b, g) ≡ (
∑
g′

π(g′|g)m′g′u
′
c) · b =

∑
g′ π(g′|g)H ′(V (b, g′))uc(C(b, g′), 1−H(b, g′))

H ′(H−1(
∑

g′ π(g′|g)H(V (b, g′))))
· b (40)

The first-order necessary conditions take the form

c : uc + Φ[Ωc − uccb−] = λ

h : ul − Φ[Ωh + uclb−] = λ

b :
∑
g′

π(g′|g)m′g′Vb(b, g
′) + Φ

∂R

∂b
= 0

As usual, note that the optimality condition with respect to b takes the typical MC and MR

formulation of (1). Note also that the envelope condition is

Vb(b−, g) = −Φuc.

The marginal revenue formula will depict the marginal utility and the continuation utility

channel. In contrast to the analysis with complete markets, debt here is non-contingent, so the

average effect across states is the one that matters.

Proposition 5. (“Incomplete markets without commitment”) The excess burden of taxation with-

out commitment and incomplete market follows the law of motion (in sequential notation)

Etnt+1Φt+1(1− ξt+1btΦt) = Φt

[
1 + bt · Etnt+1

ucc,t+1 − ucl,t+1

uc,t+1

Cb,t+1

]
(41)

where ξt+1 ≡ A(Vt+1)uc,t+1 − A(µt)Etmt+1uc,t+1, the relative marginal utility position.

Proof. See the Appendix.
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Note that we cannot divide any more as in the complete markets case so we cannot express

anymore the law of motion in terms of the inverse excess burden of taxation. Furthermore, note

that if bt > 0 and that if we have En
t Φt+1ξt+1 > 0 (which may be happening if we tax more the bad

times, and these times have also high marginal utility), then recursive utility will amplify again

the efforts of the Markov-perfect policy guy.

Proposition 6. (“Tax rate without commitment”)

• The optimal tax rate without commitment in an environment with complete markets is

τt =
Φt

[
(εcc,t + εhc,t)(1− bt

ct
) + εch + εhh

]
1 + Φt

(
1 + εhh + εhc,t(1− bt

ct
)
) , t ≥ 0, (42)

where the excess burden of taxation follows the law of motion (39).

• The respective tax rate with incomplete markets is

τt =
Φt

[
(εcc,t + εhc,t)(1− bt−1

ct
) + εch + εhh

]
1 + Φt

(
1 + εhh + εhc,t(1− bt−1

ct
)
) , (43)

where the excess burden of taxation satisfies the law of motion (41).

Proof. See the Appendix. The proof uses the first-order conditions with respect to (c, h).

6 Concluding remarks

In this paper I extend the literature on dynamic fiscal policy with a representative agent using

a common guiding principle about the relative costs and benefits of distortionary taxes across

states and dates. The government manipulates the returns of the government portfolio in order

to minimize the welfare costs of taxes. Price manipulation depends on pricing kernels, market

structure and commitment protocol, generating therefore differing policy prescriptions, which are

though manifestations of the same principle: tax more on a state or date if you can reduce that

way the return on debt.
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A Initial period problems

Here I state the problem at t = 0 for the commitment case when we have complete or incomplete

markets. These problems determine the initial allocation and the optimal value of the pseudo state

variable z and B respectively.

A.1 Complete markets

A.2 Incomplete markets

B Incomplete markets under commitment

It is convenient to keep the random variable mg and treat (32) as an additional constraint. Assign

multipliers π(g|g−)Φ̃g, π(g|g−)λ̃g and π(g|g−)ζg on constraints (29), (30) and (32) respectively.

Define also Ω(c, g) ≡ uc(c, 1− h)c− ul(c, 1− h)h, which stands for the surplus in marginal utility

units as a function of the allocation (c, h). The Lagrangian takes the form

L = H−1
(∑

g

π(g|g−)H
(
u(cg, 1− hg) + βW (Bg, g)

))
−
∑
g

π(g|g−)Φ̃g

[ uc(cg, 1− hg)∑
g π(g|g−)mguc(cg, 1− hg)

B− − Ω(cg, hg)− βBg

]
−
∑
g

π(g|g−)λ̃g[cg + g − hg]

−
∑
g

π(g|g−)ζg

[
mg −

H ′(u(cg, 1− hg) + βW (Bg, g))

H ′
(
H−1

(∑
g π(g|g−)H(u(cg, 1− hg) + βW (Bg, g))

))].
Define

K ≡
∑

g π(g|g−)uc(cg, 1− hg)Φ̃g∑
gmguc(cg, 1− hg)

and I ≡
∑

g π(g|g−)H ′
(
u(cg, 1− hg) + βW (Bg, g)

)
ζg

H ′
(
H−1

(∑
g π(g|g−)H(u(cg, 1− hg) + βW (Bg, g))

)) .
The first-order necessary conditions for an interior solution take the form:
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cg : π(g|g−)mguc(cg, 1− hg) + π(g|g−)Φ̃gΩc(cg, hg) +
∂I

∂cg
− ∂K

∂cg
B− = π(g|g−)λ̃g (B.1)

hg : −pi(g|g−)mgul(cg, 1− hg) + π(g|g−)Φ̃gΩh(cg, hg) +
∂I

∂hg
− ∂K

∂hg
B− = −π(g|g−)λ̃g(B.2)

mg : π(g|g−)ζg = − ∂K

∂mg

B− (B.3)

Bg : −βπ(g|g−)mgWB(Bg, g) = βπ(g|g−)Φ̃g +
∂I

∂Bg

(B.4)

The derivatives of the expression I denote the continuation value effects on the pricing of debt

where the derivatives of K the effect of the marginal utility of consumption, leisure and the term

m on the pricing of legacy debt B−. We have

∂K

∂mg

= −π(g|g−)xg
∑
g

π(g|g−)xgΦ̃g (B.5)

∂K

∂cg
= π(g|g−)

ucc(cg, 1− hg)∑
g π(g|g−)mguc(cg, 1− hg)

[
Φ̃g −mg

∑
g

π(g|g−)xgΦ̃g

]
(B.6)

∂K

∂hg
= −π(g|g−)

ucl(cg, 1− hg)∑
g π(g|g−)mguc(cg, 1− hg)

[
Φ̃g −mg

∑
g

π(g|g−)xgΦ̃g

]
(B.7)

and

∂I

∂cg
= −π(g|g−)mguc(cg, 1− hg)νg (B.8)

∂I

∂hg
= π(g|g−)mgul(cg, 1− hg)νg (B.9)

∂I

∂Bg

= −βπ(g|g−)mgWB(Bg, g)νg (B.10)

where

νg ≡ A(Vg)ζg − A(µ−)
∑
g

π(g|g−)mgζg, (B.11)

the “innovation” (adjusted properly by absolute risk aversion) in the multiplier ζg, which cap-

tures the shadow value of increasing mg. Vg is shorthand for value at g, Vg = u(cg, 1 − hg) +

βW (Bg, g) and µ− denotes the certainty equivalent at t − 1, so at the optimum it is equal to

W (B−, g−).
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Use now (B.5) in (B.3) to get

ζg = xg
∑
g

π(g|g−)xgΦ̃gB−. (B.12)

Thus, the innovation in ζ becomes

νg =
[
A(Vg)xg − A(µ−)

](∑
g

π(g|g−)xgΦ̃g

)
B−

=
[
A(Vg)uc(cg, 1− hg)− A(µ−)

∑
g

π(g|g−)mguc(cg, 1− hg)
]

·
(∑

g

π(g|g−)xgΦ̃g

) B−∑
g π(g|g−)mguc(cg, 1− hg)

(B.13)

Recall that the envelope condition is

WB(B−, g−) = −
∑
g

π(g|g−)xgΦ̃g (B.14)

C No commitment

C.1 Proof of proposition 6

The marginal revenue takes the form

∂R(b, g)

∂b
=
∑
g′

π(g′|g)m′g′u
′
c + b ·

{∑
g′

π(g′|g)m′g′(u
′
cc − u′cl)Cb −

∑
g′

π(g′|g)m′g′Vb(b, g
′)ξ′g′

}
where ξ′g′ ≡ A(V (b, g′))u′c − A(µ)

∑
g′ π(g′|g)m′g′u

′
c. Use now the envelope condition and the

expression for the marginal revenue and rewrite the optimality condition with respect to debt as

∑
g′

π(g′|g)m′g′u
′
cΦ
′
g′(1− ξ′g′bΦ) = Φ

[∑
g′

π(g′|g)mg′u
′
c + b ·

∑
g′

π(g′|g)m′g′(u
′
cc − u′cl)Cb

]
Divide over

∑
g′ π(g′|g)mg′u

′
c and express in terms of the n measure as
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∑
g′

π(g′|g)n′g′Φ
′
g′(1− ξ′g′bΦ) = Φ

[
1 + b ·

∑
g′

π(g′|g)n′g′(
u′cc − u′cl

u′c
)Cb
]

The result follows.
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