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“Housing is the Business Cycle.”

Edward E. Leamer,
Jackson Hole Symposium, 2007.

1 Introduction

House prices provide valuable information about ongoing changes in economic activity, both

at the aggregate and regional levels.1 Over the last half century, real house prices and output

have moved together at least half of the time in the US (Figure 1). However, people likely

have very different real-time information about these two variables. Precise information about

local house prices is readily available and relevant to individuals, while the earliest measures

of GDP are imprecise, released with delay, and may be less relevant to individual choices.

Therefore, an increase in house prices may be seen by people as good news about their

economic prospects, generating fluctuations the economy that would not occur in a world

with perfect information.

This paper proposes a new model of housing’s informational role in generating and am-

plifying demand-driven business fluctuations. The essence of the model is a price-optimism

feedback channel: higher house prices beget economic optimism, which begets even higher

house prices, and so on. Since house prices reflect all local and aggregate developments, any

aggregate shock that is not common knowledge can activate this loop, potentially driving

comovement even in response to supply shocks. In this way, the learning feedback channel

that we propose offers a new source of amplification for fundamental shocks and breaks the

strict dichotomy between disturbances to supply and demand.

We embed our learning mechanism within a neoclassical model with housing. Households

are located on islands and consume an aggregate consumption good and local housing. Traded

consumption is produced using labor from all islands, while local housing is produced using

land, local labor, and a traded productive factor (commodity good) whose supply is fixed.

Local house prices can move either because of an increase in the future product of local labor,

or because of a current aggregate disturbance to housing production.

1Regarding aggregates, Leamer (2007) and Leamer (2015) make the point forcefully, and Campbell and
Cocco (2007) and Miller et al. (2011) provide similar evidence at the regional level.
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Figure 1: Real gross domestic product and the Shiller national house price index.

Most fluctuations in local house prices are driven by local labor productivity, so people

observing high house prices become optimistic about their own labor income prospects. How-

ever, a fall in the productivity (or availability) of the common productive factor can also

drive an increase in house prices across islands. In this case, the increase in house prices is

interpreted by households as a positive signal about wages, increasing demand for both con-

sumption and housing on all islands. Higher aggregate demand further increases house prices,

and consequently the price of the common productive factor, reinforcing the initial price in-

crease. In equilibrium, what started as a (possibly small) change in housing supply leads to a

generalized increase in house prices, a boom in aggregate demand for both consumption and

housing, and a spike in the price of the traded input factor.

Our model of learning from prices has several features that make it an appealing model of

the business cycle. First, we embed our mechanism in a flexible price model with competitive

markets. This means that endogenous fluctuations in housing demand, and their real effects,

are not driven by competitive or nominal frictions, or by suboptimal monetary policy. Indeed,

our real economy can be interpreted as a monetary economy in which the nominal price level

is fixed. Hence, our model aligns well with recent experience in developed economies, where

substantial real macroeconomic fluctuations have coincided with small and largely acyclical
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fluctuations in inflation (Angeletos et al., 2016).

Second, the signal structure faced by households is fully microfounded. All shocks are

fundamental and we explicitly derive the signals used by agents as the outcome of competitive

markets. Hence, the model provides an explicit description of how people’s beliefs become

coordinated and does not require an exogenous assumption, as do the literatures on sunspots

(e.g. Cass and Shell, 1983) and sentiments (e.g. Angeletos and La’O, 2013; Benhabib et al.,

2015) regarding how people coordinate their beliefs.

Third, while we introduce our mechanism in the context of house prices and housing

productivity, its logic extends to any local price and to other sorts of macroeconomic fun-

damentals. Hence, the mechanism we propose can be a general source of macroeconomic

comovement, not just in response to a single shock. We show this generality by introducing

a shock to consumption productivity, but also refer the reader to earlier drafts of this paper

that demonstrate how the mechanism works for local consumption prices, and for shocks to

the nominal money supply.2

The microfoundation of our signal structure as a price is crucial to our mechanism for

two reasons. First, the fact that information comes from market prices, rather than from

exogenously specified signals, means that higher house prices can increase demand for both

consumption and housing in our model; the price learning channel causes housing demand to

be upward sloping. Upward sloping demand, in turn, causes prices and quantities comove in

our model.

Second, the feedback of the global factor price into local housing prices allows the model to

deliver strong amplification. For some calibrations, the feedback channel can be so strong that

the economy has equilibria with an unusual feature: house prices and aggregate quantities

exhibit sizable correlated fluctuations in the limit of arbitrarily small aggregate shocks. To an

econometrician, the fluctuations emerging at the limit of no aggregate shocks would appear

to be driven by something akin to “animal spirits” (Shiller, 2007), “noise” (Gazzani, 2019),

or “sentiment” (Benhabib et al., 2015).3

2In earlier drafts of this paper, (Chahrour and Gaballo, 2017) in which the leading price is local consump-
tion, we also show that total factor productivity shocks can be weakly correlated with business cycle variables
all horizons—as they are in the data of Angeletos et al. (2014) and Angeletos et al. (2016)—and still be the
single driver of the cycle.

3In the limit of zero variance of supply shocks, our equilibria have the same stochastic properties as the
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After characterizing equilibrium, we examine the qualitative features of the economy. We

show that the model implies positive comovement between output, employment, hours in

both the consumption and housing sector, house prices and land prices for any calibration

and any equilibrium so long as aggregate shocks are small enough. Hence the model provides

a foundation for macroeconomic comovement across a wide range of variables.

We then enrich the model to allow a portion of housing productivity to be common knowl-

edge. This allows the model to exhibit standard real business cycle comovement in response

to the common knowledge portion of the shock, but continue to exhibit more “demand-like”

fluctuations in response to the portion of the shock that households learn about via prices.

In a simple calibration, we show that the extended model delivers qualitatively realistic

(i.e. positive but imperfect) correlations between all real variables in the economy. Moreover,

even when the model has a unique equilibrium, it delivers substantial amplification of price

and quantity fluctuations in the housing market and non-trivial fluctuations in consumption,

even though the full information version of the model exhibits constant consumption.

We augment our discussion of real comovements with some non-structural evidence favor-

ing the house price as source of peoples’ economic learning. In this exercise, we use Michigan

Survey of Consumer Expectations data to show that peoples’ past house price experiences are

a far better predictor of their expectations of their own income than are peoples’ reports about

aggregate economic news that they have heard. Moreover, house price experiences modestly

lead income expectations, a timing that is consistent with learning flowing from house prices

to income expectations. While this evidence is certainly not dispositive, it suggests the model

we propose could guide fruitful and more structural interpretations of the expectations survey

data.

We conclude the analysis of the paper with several extensions that indicate the robustness

of the basic mechanism. Among these, we show that aggregate consumption productivity

shocks are isomorphic to exogenous demand shocks in the housing market. When they become

sufficiently small, consumption productivity shocks deliver the very same comovements as our

baseline model.

sentiment equilibria characterized by Benhabib et al. (2015). Yet, they are not sentiment equilibria in the
sense intended by those authors. We discuss this issue in more detail in Section 5.
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Literature review

The expectation channel in our economy contrasts with the channel through which news

or noise shocks drive demand-driven fluctuations in New-Keynesian models, as in Lorenzoni

(2009) and subsequent literature. Without nominal rigidities, these models would imply

that higher anticipated aggregate productivity drives a change in the real interest rate rather

than consumption (see Angeletos, 2018, for a nice discussion.) This does not happen in our

real model because local house prices incorporate imperfect news about local productivity,

which cannot be offset by moves in the aggregate real interest rate. Still, aggregate demand

cannot move in our economy without our learning mechanism, which correlates forecasts of

consumption across islands.

This paper is the first to demonstrate that learning from prices might play a central role in

explaining business cycle comovements in the context of a rational expectations model. Never-

theless, endogenous signal structures have also appeared in macroeconomic contexts, starting

with Lucas (1972). More recent examples include Amador and Weill (2010), Venkateswaran

(2013), and Benhima (2018); Benhima and Blengini (2017). Most recently, Gaballo (2018)

presents a learning-from-prices mechanism that can explain aggregate price rigidity in an oth-

erwise frictionless monetary model, while Angeletos and Lian (2019) presents a flexible price

model where noisy observations of the intertemporal price lead discount rate shocks to drive

real variables. Departing from rational expectations, Eusepi and Preston (2011) show that

adaptive learning can generate realistic business cycle co-movements.

Our focus on the informative role of prices also echoes a long tradition in finance, starting

with Grossman and Stiglitz (1976, 1980).Several authors have shown that this mechanism can

deliver price amplification and/or multiple equilibria, including Burguet and Vives (2000)

and Barlevy and Veronesi (2000), Albagli et al. (2014), Manzano and Vives (2011), and

Vives (2014).4 Unlike these papers, which usually include noise traders or exogenous shocks

to information, every shock in our model is fundamental and we are the first to show the

potential for extreme amplification in limit cases.

4The literature on price revelation in auction markets following Milgrom (1981) also features a dual infor-
mational/allocative role for prices. For recent examples, see Rostek and Weretka (2012); Lauermann et al.
(2012); Atakan and Ekmekci (2014).
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With respect to the housing market, our theory is consistent with a range of empirical

evidence on housing and the business cycle. Our model of the housing market is very similar to

Davis and Heathcote (2005) and, like in that paper, productivity shocks are the main drivers

of the housing market. In contrast to that paper, however, prices and quantities in the housing

market can positively co-move as observed in the data.5 Our model also qualitatively accounts

for the high volatility of the price of land (Davis and Heathcote, 2007) and for its negative

co-movement with labor market variables (Liu et al., 2016).

The demand-like effects of productivity shocks in our economy also challenge conventional

restrictions use to identify supply and demand shocks. For example, Iacoviello and Neri

(2010) estimate that about 70% of housing price changes are due to housing preference shocks,

primarily because of positive price-quantity comovement in the housing market.

Finally, our paper also contributes to a longstanding debate about the nature and size

of house price wealth effects. Frictionless models typically imply that house prices should

have no causal impact on consumption (e.g. Buiter, 2010) but empirical studies often suggest

otherwise. For example, Muellbauer and Murphy (1990) argue the spike in UK consumption

in the late 1980’s was driven directly by rising house prices, while King (1990), Pagano (1990),

and Attanasio and Weber (1994) argue consumption and house prices likely reflected peoples’

changing perceptions of their permanent income. These competing views can coexist in our

model: rising housing prices drive increased consumption not because consumers expect to

sell their houses at a higher price, but because consumers interpret them as a sign of higher

labor income.

Other theoretical mechanisms for a direct consumption effect of housing have been pro-

posed more recently in the literature, including borrowing constraints (Iacoviello, 2005),

wealth heterogeneity (Kaplan et al., 2017), or incomplete markets (Berger et al., 2017). The

learning channel we formalize here offers a complimentary explanation to these mechanisms.

One difference is that our channel does not depend on actual new house sales or credit

contracts, which might imply a longer delay between house prices and their effects on con-

sumption.

5Recently, Nguyen (2018) and Fehrle (2019) have also proposed solutions to related comovement challenges,
at the cost of introducing further segmentation in the capital market.
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Evidence from from disaggregated levels is also largely consistent with our theory. For

example, Miller et al. (2011) finds a positive effect of local house price changes to local per

capita growth in US metropolitan-level data, with effects that last about two years; Campbell

and Cocco (2007) finds that a 1% increase in the value an individual’s house is associated with

a 1.22% increase in their real non-durable consumption in the UK, with the unpredictable

component of housing prices having an impact both at national and regional level. The recent

studies by Mian et al. (2013) and Mian and Sufi (2014) also present regional evidence that

falling house prices during the Great Recession are associated with consumption reductions

at the ZIP code level.

2 A Housing Model with Learning from Prices

In this section, we present a simple real business cycle model with housing. We aim as

much as possible to provide analytical results regarding the mechanism and make simplifying

assumptions to this end. Most of these assumptions can be relaxed; we discuss when and how

as we proceed.

2.1 Preferences and technology

The economy consists of a continuum of islands, indexed by i ∈ (0, 1). Each island is inhabited

by a continuum of price-taking households who consume local housing and a traded numeraire

consumption good. Households provide local labor which is used in the production of both

goods. On each island, a mass of competitive housing investment firms combine local labor and

land with a traded commodity good to construct new houses, while an aggregate consumption

sector combines all islands’ labor to produce the traded consumption good.

Households

The representative household on island i chooses consumption, labor supply, and savings in

a risk-free nominal bond to maximize the utility function:

Ui0 ≡
∞∑
t=0

βt
{

log(Cφ
itH

1−φ
it )− vNit

}
(1)
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In the above utility function, Cit denotes household i’s consumption of the tradable consump-

tion good, Hit measures the total quantity of housing consumed, and Nit is the household’s

supply of labor. The household discount factor is β ∈ (0, 1), the share of housing in the

consumption basket is φ ∈ (0, 1), and v parameterizes the household’s linear disutility of

labor.6

We assume that housing consumption is composed of a sequence of housing vintages, ∆iτ |k,

constructed at time k and combined according to the Cobb-Douglas aggregator

Hit ≡
t∏

k=−∞

∆
(1−ψ)ψt−k

it|k , (2)

where ψ ∈ (0, 1). This formulation for housing utility adds a realistic dimension to the model,

since housing vintages can have very different characteristics and are not perfectly substi-

tutable. More importantly for our purposes, however, this formulation in conjunction with

log-utility implies that every housing vintage has an additive-separable impact on intertem-

poral utility, allowing us to analyze the dynamic model in closed form. The housing aggregate

can be written recursively as Hit = ∆1−ψ
it|t (1− d)Hψ

it−1, a result we use going forward.

Each vintage of housing depreciates at a constant rate d ∈ (0, 1), so that

∆iτ+1|k = (1− d)∆iτ |k

for τ ≥ k (while, of course, ∆iτ |k = 0 for τ < k). The aggregate housing stock, defined as

Hit =
∑t

k=−∞∆it|k, then evolves according to a standard evolution equation,

Hit = ∆it|t + (1− d)Hit−1. (3)

The choices of the household are subject to the following budget constraint,

Bit ≡
Bit

Rt

+ Cit + Pit∆it|t −WitNit −Bit−1 − Πc
t − Πh

it ≤ 0 (4)

for t ∈ {0, 1, 2...} with Bi−1 = 0. Household resources come from providing local labor at wage

Wit, from past bond holdings, from profits Πh
it of locally-owned housing firms, and from profits

Πc
t of the aggregate consumption firm, which is evenly held across islands. The household

uses its funds to purchase numeraire consumption, to acquire new housing at price Pit, and

to save in a zero-net-supply aggregate bond with a real risk-free return Rt.

6In the Appendix, we allow for convex disutility of labor.
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We denote the price of the local housing vintages as Pit|k and define the price of the

total housing stock as PH
it =

∑t
k=−∞ Pit|k∆it|k/Hit. Notice, however, that only the price of

the current vintage, Pit ≡ Pit|t, shows up in the budget constraint in (4). This happens

because we have already anticipated an implication of housing market clearing: since the

local household is the only potential buyer and seller of past vintages, trade in them can

never generate net resources for the island. Hence, in our model, housing wealth is not

wealth in the sense of Buiter (2010). The literature has proposed several ways to break

this irrelevance, for example by introducing borrowing constraints (Iacoviello, 2005), wealth

heterogeneity (Kaplan et al., 2017), or incomplete markets (Berger et al., 2017). Here, we

describe a new and distinct mechanism through which housing price affect consumption that

is potentially complementary to these other mechanisms.

Housing Firms

Housing firms produce new houses using a Cobb-Douglas technology,

∆it = L1−α
it Xα

it, (5)

that combines land (Lit) with new residential structures (Xit) to generate new residential units

∆it ≡ ∆it|t with structures share α ∈ (0, 1). Residential structures, in turn, are produced via

a Cobb-Douglas production function

Xit = (Nh
it)

γ(e−ζ̃tZit)
1−γ (6)

that combines local labor (Nh
it) with a traded commodity good (Zit) according to the share

parameter γ ∈ (0, 1).

The housing producer maximizes profits,

Πh
it ≡ Pit∆it −WitN

h
it −Qt (Zit − Z)− VitLit

subject to (5) and (6). In the above, Vit is the local price of land, Wit is the price of local

labor, and Qt is the price of the commodity good sold across islands. We assume that housing

firms are endowed each period with Z units of the commodity good, which trades freely across

islands at a common price and depreciates fully at the end of the period.7 Land supply is

7We interpret Z as a commodity good just for simplicity, to fix ideas. For example, it could also be
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exogenous, as each period a fixed amount of residential land — normalized to one — becomes

available to housing producers on the island.8 Without any loss of generality, we assume that

new land is allocated to local firms.

The only aggregate shock affecting our baseline economy is a shock to productivity of the

commodity good, ζ̃t. This shock evolves according to a random walk, ζ̃t = ζ̃t−1 + ζt, with

i.i.d. innovation ζt distributed according to N
(
0, σ2

ζ

)
. We focus our presentation on this shock

because it has no effect on consumption under full information. Still, other shocks could play

a similar role: for example, in the Appendix we show that ζt is isomorphic to a shock to the

stock of endowment in Z.

Consumption Sector

The numeraire consumption good is traded freely across islands and is produced by a contin-

uum of identical competitive firms. The representative consumption producer combines labor

from all sectors to maximizes profits

Πc
t ≡ Yt −

∫
WitN

c
it

subject to the production function,

Yt =

(∫
eµ̃it/ηN c

it
1− 1

η di

) 1

1− 1
η
. (7)

The quantity of local labor used is denoted by N c
it, and labor types can be substituted with

elasticity η > 0. Island-specific labor productivity is a random walk, and evolves according

to µ̃it = µ̃it−1 + µ̂it, where µ̂it is i.i.d. and drawn from the normal distribution N (0, σ̂µ). We

consider an extension with an aggregate shock to consumption productivity in Section 5.

Market Clearing

Clearing in the local land and labor markets requires

Lit = 1 and Nit = N c
it +Nh

it. (8)

interpreted as a unspecific type of labor that is supplied inelastically and is free to be traded across islands.
8These assumptions do not imply that land supply grows over time. Provided an appropriate transforma-

tion of the depreciation rate, this formulation is equivalent to a model in which structures are placed on a
fixed stock of land and existing land becomes free as those structures depreciate. See Davis and Heathcote
(2005) for details.

10



Per the discussion above, we omit market clearing conditions for all past housing vintages,

since their trade is irrelevant at the island level.

Finally, clearing in the aggregate markets for bonds, consumption, and the commodity

good requires

Yt =

∫
Citdi, 0 =

∫
Bitdi, and Z =

∫
Zitdi. (9)

2.2 Timing and equilibrium

To introduce our information friction, we use the family metaphor initially discussed by Lucas

(1980) and Woodford (2003, pp. 144-145), and more recently adopted by Angeletos and La’O

(2010) and Amador and Weill (2010). The household is composed of two types of agents: a

shopper, who uses household resources to buy consumption and housing, and a worker-saver,

who decides on the number of hours to supply on the labor market and also on the quantity

of bonds to buy.

Both family member types act in the interest of the household, but their actions are

decentralized and they cannot pool their information within a time period. This means

that the shopper commits the household to buy ∆it and Cit having only partial information

about its problem. In other words, whereas ∆it and Cit are optimal choices conditional on

the information set of shoppers, Nit and Bit are conditioned on the full information set of

workers.

Each period is composed of four stages:

1. The household splits into shoppers and worker-savers.

2. Shocks realize, namely future local productivity innovations, {µ̂i,t+1}i∈(0,1), and the cur-

rent aggregate shock, ζt. The “best available” information set, Ωt ≡ {{µ̂i,τ}t+1
0 , {ζτ}t0},

is observed by firms and worker-savers, but not shoppers.

3. Production and trade take place. Shoppers and workers make their choices based on the

information they have, which includes the competitive equilibrium prices in the markets

in which they trade. Firms make production choices in light of realized productivity

and input prices; and all markets clear.

11



4. Family members share information, revealing Ωt to the shoppers.

Because shoppers do not immediately observe Ωt, they make choices under uncertainty.

However, they do observe the local price of housing in their island, Pit, which they use to

make inference; shoppers’ information set is therefore {Pit,Ωt−1}. We derive the information

about current conditions contained in Pit shortly.

The family fiction is a convenient modelling tool, but it is not essential to our mechanism.

What is important is that some agents have access to information about realized shocks,

since prices cannot reveal information unless that information is already available, perhaps

noisily, to some agents in the economy (Hellwig, 1980). We could have achieved the same

effect without separation between shoppers and workers by assuming that only a fraction

of households on each island are informed, in the spirit of Grossman and Stiglitz (1980).

Nothing crucial about our results would change if we followed this alternative, though the

algebra becomes more cumbersome.9

The formal definition of equilibrium is the following.

Definition 1 (Equilibrium). Given initial conditions
{
{Bi−1,Hi−1, µ̃i0}i∈(0,1) , ζ̃i−1

}
, a ratio-

nal expectations equilibrium is a set of prices, {{Pit, Vit,Wit}i∈(0,1), Qt, Rt}∞t=0, and quantities,

{{Bit, N
c
it, N

h
it, Nit, Cit, Hit,∆it, Xit, Lit, Zit}i∈(0,1), Yt}∞t=0, which are contingent on the realiza-

tion of the stochastic processes {{µ̃it}i∈(0,1)}∞t=0 and {ζ̃t}∞t=0, such that for each t ≥ 0 and

i ∈ (0, 1):

(a) Shoppers optimize, i.e. {Cit,∆it} are solutions to maxCit,∆it
E[Uit|Pit,Ωt−1] subject to

E[Bit|Pit,Ωt−1] ≤ 0;

(b) Workers optimize, i.e. {Nit, Bit} are solutions to maxNit,Bit E[Uit|Ωt] subject to

Bit ≤ 0;

(c) Housing producers optimize, i.e. {Nh
it, Zit, Lit,∆it} are solutions to maxNh

it,Zit,Lit,∆it
Πh
it

subject to (5) and (6);

9We followed this track in our earlier working paper, Chahrour and Gaballo (2017). Earlier drafts also
showed that our mechanism could arise on the supply side of the economy, more like Lucas (1972). This
version of the model leads to demand-driven fluctuations in the market for intermediate inputs rather than
in the final market. Our choice to place the main friction with households is consistent with the evidence of
Chahrour and Ulbricht (2017) that household expectation errors are needed to match aggregate data.
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(d) Consumption producers optimize, i.e. {N c
it}i∈(0,1) are solutions to max{Nit}i∈(0,1) Πc

t

subject to (7);

(e) Markets clear, i.e. equations (8) - (9) hold.

Let Λc
it be the Lagrangian associated with the expected budget constraint showing up in

the problem of the shopper, and Λit be the Lagrangian associated with the problem of the

worker. As the worker is perfectly informed, only the latter is the actual shadow value of

relaxing the household budget constraint. Therefore, optimality on the side of the shopper

requires φC−1
it = Λc

it = E[Λit|Pit]. In the Appendix, we derive the full set of optimality

conditions describing equilibrium.

2.3 Linearized Model

We now derive the model in terms of log-deviations from an initial point. We choose as initial

point the steady state of the deterministic economy and, to economize notation, solve for

equilibrium at time t = 0 (i.e. when all states are initialized to zero). Going forward, we

then omit time indexes, denote future variables with an apostrophe, and call the shoppers’

information set simply pi. Given our assumption that past shocks are common knowledge,

nothing in the description of equilibrium changes when t 6= 0.

Shoppers demand consumption and housing goods according to the following:

ci = −E[λi|pi] (10)

δi = −E[λi|pi]− pi (11)

where the operator E[·|pi] represents the expectation of the shopper conditional on the market

housing price pi and λi is the actual marginal value of the household i’s resources (known by

the worker but not by the shopper). In fact, pi, is the only piece of information (jointly with

common prior and past shock realizations) that a shopper has to infer the marginal value

of consumption. The higher the perceived marginal valuation value of budget resources the

lower the demand for consumption and housing by the shopper.
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The solution to the worker-shopper problem is given by:

wi = −λi (12)

λi = E[λ′i|Ω] + r. (13)

The worker provides any quantity of labor demanded, so long as the offered wage equals

the household Lagrangian, and purchases bonds until the interest rate reflects the difference

between the current and the expected future marginal value of budget resources, which the

worker-saver forecasts based on Ω, the full current information set.

Housing firm optimality conditions are standard:

zi + q = pi + δi, (14)

nhi + wi = pi + δi (15)

li + vi = pi + δi (16)

with production technology given by

δi = αγnhi + α (1− γ)
(
zi − ζ̃

)
, (17)

after imposing the fact that li = 0.

Consumption producer’s optimal choices imply:

nci = µ̃i − η (wi − w) + nc (18)

y = nc (19)

w = 0 (20)

where wt denotes the average log-wage in the economy. Condition (18) captures firms’ demand

for island-specific labor. Firms demand more of a type of labor whenever its productivity is

high or its wage is low compared to the average, or if they demand more labor overall.

Nevertheless, the wage for the optimized bundle of labor type is invariant as there is no change

in aggregate productivity in the consumption sector; we relax this condition in Appendix.

All relations above obtain as exact log transformation. Only the island resource constraint
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needs to be log-linearized as follows:10

C(ci − c) = C(wi − w) + C(ni − n)−Qzi − βbit. (21)

In equation (21), C and Q represent the deterministic steady state values of C and Q used

in the linearization, and we have set past bond holdings to zero. The equation states that

higher than average consumption in one island must be financed by a higher local wage, by

higher local labor supply, by selling the commodity good (i.e. using less zi in production),

or by decreased savings. As noted before, an important implication of market clearing in the

local housing market is that the existing housing stock cannot be used to raise island level

consumption. Other market clearing conditions 0 =
∫
zidi =

∫
bidi and n =

∫
ncidi +

∫
nhi di

complete the description of equilibrium relations.

3 Learning from Prices

This section presents the main theoretical results regarding the inference problem of shoppers.

We first derive the marginal value of household resources as a function of exogenous shocks

and then characterize the price signal seen by shoppers. Finally, we derive the implications

for equilibrium inference.

3.1 The marginal value of budget resources

The only friction in the economy is shoppers’ uncertainty regarding the marginal value of

household budget resources. Without this friction, the model behaves like a standard real

business cycle economy. Lemma 1 expresses the value of resources, λit, as a function of

fundamentals.

Lemma 1. In equilibrium,

λi = E[λ′i|Ω] = −ωµµ̂′i − ωbbi and r = 0 (22)

for any τ ≥ 0 and any i ∈ (0, 1). In addition, ωµ > 0 and ωb > 0, with limβ→1 ωb = 0.

Proof. Proofed in Appendix.

10We linearize bond holdings in levels because Bit can take negative values.
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Intuitively, the intertemporal arbitrage carried out by worker-savers allows them to equal-

ize the marginal value of budget resources across time. One important implication is that the

real interest rate does not react to the aggregate productivity shock in housing production.

This result is a consequence of the fact that housing wealth cannot be sold across islands and

therefore cannot be used to increase consumption of the tradable good.

While “housing wealth is not wealth” in the sense of Buiter (2010), bonds and local labor

income are, since they can be sold across islands in exchange for consumption. Therefore,

islands with more productive labor (or higher savings) have better consumption prospects

and a lower marginal value of budget resources. For this reason, the value of the Lagrangian

multiplier depends on the realization of future local labor productivity shock, µ̂′i, and bond

holdings at the end of the first period, bi.

As β tends to unity, however, λi becomes independent of bond holdings since, in this case,

bond wealth generates no interest earnings and is rolled over indefinitely without affecting

consumption. To simplify our exposition going forward, we focus our analytical results on

the case of β approaching one so that λi can be treated as entirely exogenous. However,

our propositions hold generically. We also provide a code for solving the general model

numerically, which we we use to produce the numerical simulations in the next section.

We conclude this section with a remark on the distinction between local and aggregate

productivity in consumption sector. Here, as in the standard real business cycle model, an

aggregate shock to future productivity in the consumption sector would drive the real interest

rate and the future marginal value of resources in opposite directions, leaving their current

marginal value unchanged. This is why papers looking for business cycle effects of productivity

news typically require nominal frictions along with suboptimal monetary policy, e.g. Lorenzoni

(2009). In our environment, however, local news has an equilibrium effect on λit because the

real interest rate can only neutralize the aggregate components of news. Transforming the

effects of local news into an aggregate demand shock requires a friction, however, such as the

information friction we describe below.
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3.2 The local housing price

We now derive the signal that shoppers use to make their inferences about µ̂′i. We focus on the

limit case β → 1. However, our propositions are proven in the Appendix for any β ∈ (0, 1).

Rearranging first order conditions from the housing sector, we recover the standard Cobb-

Douglass result that the price is a linear combination of input costs weighted by their elasticity:

pit = (1− α)vi + αγwi + α (1− γ) (ζit + qit) . (23)

We wish to re-write (23) in terms of the exogenous variables (and expectations thereof.)

Taking β → 1 so that ωb = 0, we substitute (22) into the local wage in (12) to conclude

wi = ωµµ̂
′
i ≡ µi,

where the rescaled local shock µi has variance σ2
µ. Equations (11), (16) and (22) can be

combined to get vit = E[µit|pit], implying that the shoppers’ observations of the house price

already entail all the information they might glean from observing the land price indepen-

dently. Finally, the market clearing condition for the commodity good and (14) implies that

q =

∫
vidi =

∫
E[µi|pi]di.

In sum, when workers expect higher future local productivity, they demand higher current

wages which increases the price of housing. On the other hand, the price of land and of the

commodity good respond to fluctuations in demand, so shoppers’ increased desire for housing

pushes up the price of these two goods.

Importantly, the price of local land only reflects local housing demand, but the price of

the commodity good, which is traded globally, varies with the aggregate appetite for housing

across islands. The shopper is able to infer the land component of the house price because it

varies with her own actions. By contrast, the remaining component of house prices confounds

the price of the commodity good and the local wage, so the shopper cannot be sure which is

driving their observation.

Because shoppers can infer vi, observing the housing price is informationally equivalent to

observing the following price-signal:

si = γµi + (1− γ)

(
ζ +

∫
E[µi|pi]di

)
. (24)
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Upon observing an increase in the price signal, the shopper will therefore revise their expected

Lagrangian down, increasing her demand for consumption and housing. Yet, the same increase

in price could be driven by aggregate factors, either an increase in the commodity price or a

decrease in aggregate housing productivity, that are not related to the local conditions that

shopper would like to infer.

In this context, a shoppers’ optimal response to a price change depends on the reason that

the price has changed. Yet, shoppers cannot directly observe why prices are changing, and

they attribute only a (small) part of of every observed price change to aggregate conditions.

Because of this, a price increase driven by a fall in aggregate productivity maybe interpreted

on every island as a positive local shock. This common mistake triggers an increase in demand

on each island for consumption and local housing. Through this learning channel, a current

aggregate shock to housing productivity can generate a change in aggregate demand, for both

consumption and houses.

Equation (24) also shows the potential for feedback effects that lead to amplification. In

particular, an economy-wide increase in demand for housing leads to a higher demand for

the inelastically supplied commodity good, raising its price, q. Higher q, in turn, pushes all

houses prices up, driving more optimism on every island. In this way, an initial mistake in

inference — driven in this case by ζ — leads to an effect on the signal that exceeds the (1−γ)

on the fundamental shock itself.

3.3 Equilibrium

We now solve the shoppers’ inference problem. A key feature is that the precision of the

price-signal about µi depends on the equilibrium volatility of the commodity price, which is

a general equilibrium object. Following the related literature, we focus our analysis on linear

equilibria.

We begin by conjecturing that the optimal individual expectation is linear in pi and can

be written as

E[µi|pi] = asi = a

(
γµi + (1− γ)

(∫
E[µi|pi]di+ ζ

))
,

where a is a weight measuring the strength of the reaction of shopper i’s beliefs to the signal

18



she receives. Since the signal is ex ante identical for all shoppers, each uses a similar strategy.

By integrating across the population we get:∫
E[µi|pi]di = a (1− γ) (E[µi|pi]di+ ζ) .

Solving for the average expectation then yields

c =

∫
E[µi|pi]di =

a (1− γ)

1− a (1− γ)
ζ, (25)

which is a nonlinear function of the average weight, a. The fact that the average expectation

is normally distributed confirms the conjectured form of the individual forecast.

In the (25), we have used (10) to equate consumption with the average expectation. Hence,

as long as a is different form zero, i.e. the local housing price is informative about µi, aggregate

consumption moves with the aggregate shock to housing productivity. Using (25), the variance

of consumption is given by

σ2
c (a) =

(
a (1− γ)

1− a (1− γ)

)2

σ2, (26)

where σ2
c ≡ var(

∫
E[µi|pi]di)/σ2

µ and σ2 ≡ σ2
ζ/σ

2
µ are the variances of the average expecta-

tion and the aggregate shock, respectively, once each is normalized by the variance of the

idiosyncratic fundamental.

Substituting the average expectation in (25) into the price signal described in equation

(24), we get an expression for the local signal exclusively in terms of exogenous shocks:

si(a) = γµi +
1− γ

1− a (1− γ)
ζ, (27)

whose precision with regard to µi is given by

τ(a) =

(
γ (1− a (1− γ))

(1− γ)σ

)2

.

Note that as a approaches (1− γ)−1, precision is nul. This is because for that value there is a

one-to-one feedback from individual to average expectation, which can be satisfied only if the

size of the exogenous shock get infinitesimally smaller than the fluctuations of expectations.

Economically this corresponds to having the average demand in the housing market that

approaches the average supply, so that any aggregate perturbation gets indefinitely amplified.

See page XX for more details. We are now ready to compute a shopper’s optimal inference,

taking the average weight of other households as given. We seek an a∗ such that E[si(a)(µi−
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a∗si(a))] = 0, i.e., the covariance between the signal and forecast error is zero in expectation.

This condition implies that information is used optimally. The best individual weight is given

by

a∗(a) =
1

γ

(
τ(a)

1 + τ(a)

)
. (28)

Given the linear-quadratic environment, we can interpret a∗(a) in a game-theoretic fashion

as an individual’s best reply to the profile of others’ actions summarized by the sufficient

statistic a. To be precise, every a∗ is associated with one and only one contingent strategy

that describes the conditional expectation E[µi|pi] = a∗si(a) of the shopper i, where si(a)

identifies a set of states of the world indistinguishable to the shopper i.

An equilibrium of the model corresponds to a fixed point of the individual best-weight

mapping given by equation (28), which describes a cubic equation. In practice, there are as

many equilibria as intersections between a∗(a) and 45% line. In the two top panels of Figure

2 we plot the best weight function for β → 1 as a function of the actual weight against the

45% line in the case γ > 1/2 in panel (a) and γ < 1/2 for panel (b) for two different values of

σ. Irrespective of the number of intersections, the best weight function exhibit some invariant

properties.11 Let us start by looking to the case of a unique equilibrium first.

Unique Equilibrium

When local housing prices respond more strongly to local conditions, i.e. γ > 1/2 the model

exhibit a unique equilibrium.

Proposition 1. For γ ≥ 1/2 and any β ∈ (0, 1), there exists a unique REE equilibrium for

â = a∗(â) ∈ (0, γ−1). Moreover, limσ→∞ â = 0 and limσ→0 â = γ−1 with ∂â/∂σ < 0.

Proof. Given in Appendix A.5.

11First, an equilibrium weight has to be positive, a∗(0) > 0, since the local housing price always positively
correlate with µi. Second, the individual best weight is increasing in the average weight, a′i(a) < 0, when a ∈
(0, (1−γ)−1) as larger a magnify noise into the price signal, and increasing, a′i(a) > 0, when a ∈ ((1−γ)−1, γ−1)
as larger a shrinks noise into the price signal. In particular, note that at the limit a → (1 − γ)−1 the price
signal is uninformative so that a∗(a) = 0. Third, the best weight function is decreasing in the size of the
variance of aggregate productivity shocks ∂a∗(a)/∂σ ≥ 0 as more noise into the price signal decreases the
optimal weight.
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(a) γ = 0.75

0

0

(b) γ = 0.25

(c) γ = 0.75 (d) γ = 0.25

Figure 2: Top panels illustrate the best weight function a∗(a) in a case with unique equilibrium
(a) and with multiplicity (b) for two different values of σ. Bottom panels show the evolution of
aggregate consumption volatility in a case with a unique equilibrium (c) and with multiplicity
(d) as a function of an inverse measure of σ.
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Proposition 1 states that when the aggregate component receives relatively low weight

in the price signal, the model exhibits uniqueness of equilibrium. This is evident from the

top-left panel of Figure 2. It shows that the best weight function is a decreasing function

of the actual weight in the relevant range implying that a unique equilibrium exists. We

demonstrate in appendix that a lower β monotonically decreases the best weight function, so

uniqueness is preserved for any β < 1.

Note that as the average reaction approaches that value from below the precision of the

price signal decreases. i.e. there is a substitutability between average weight and precision

τ ′(a) < 0, which is peculiar of our model. In words, as the average weight increases, any

initial aggregate shock has a higher impact on expectations because of the expectational

feedback, making the signal noisier. In other examples of endogenous signals in the literature,

e.g. Amador and Weill (2010), expectational feedback amplifies the common fundamental

instead that the common noise, so that there is complementarity between average weight and

precision. The presence of substitutability also explains why we can establish uniqueness of

the equilibrium irrespective of the variance of the exogenous noise, which is typically not a

property of setting that exhibit complementarity.

Moreover, an important feature of our unique equilibrium is that an amplification of the

noise term obtains as it variance shrinks. Intuitively, for any given a, the smaller noise term

receives the same amplification and the signal is less noisy. Hence a∗(a) must rise. But as a

increases, the impact of the smaller zeta on expectation rises: i) directly because of the higher

weight and ii) indirectly via the expectational feedback, as a increases.

Panel (c) of figure 2 plots the variance of aggregate beliefs as a function σ and shows

that in the case of the unique equilibrium amplification , although substantial, does not grow

faster than the shrinking of the shock size, so that in the limit σ → 0 average beliefs exhibits

no fluctuations.

Multiple Equilibria

When local housing prices respond strongly to aggregate conditions, i.e. γ < 1/2, the feedback

loop between demand and commodity input prices can be so strong that multiple equilibria

exist. Proposition 2 summarizes this result.
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Proposition 2. For γ < 1/2 there always exists a low REE equilibrium for a− = a∗(a−) ∈

(0, (1− γ)−1); in addition, there exists a threshold σ̄2(β) with ∂σ̄2(β)/∂β ≥ 0 such that, for

any σ2 ∈ (0, σ̄2(β)), a middle and a high REE equilibrium also exist for a∗(a◦) = a◦ and

a∗(a+) = a+, respectively, both lying in the range ((1− γ)−1 , γ−1). In the limit σ2 → 0:

i. the high equilibrium converges to a point with no aggregate volatility:

lim
σ2→0

a+ = min

(
1

γ
,

1

1− γ

)
lim
σ2→0

σ2
c (a+) = 0.

ii. the low and middle equilibria get the same value and exhibit non-trivial aggregate volatility:

lim
σ2→0

a◦,− =
1

1− γ
lim
σ2→0

σ2
c (a◦,−) =

γ(1− 2γ)

(1− γ)2
. (29)

Proof. Given in Appendix A.5.

The best weight function in this case is plotted in panel (b) of Figure 2. It shows that

the best weight function yields three intersections with the 45% line provided the variance of

productivity shocks σ is sufficiently low, otherwise a unique equilibrium exists. We demon-

strate in the proof that a lower β is equivalent to consider a larger σ, so β → 1 turns out to

be the case most favorable towards multiplicity.

The key difference with the previous case is that now the value for which the price signal

gets completely uninformative, i.e. a = (1−γ)−1, is strictly lower than the perfect information

value a = (1 − γ)−1. Everything we discussed for the unique equilibrium equally holds now

relative to the range [0, (1− γ)−1]: i) there is substitutability between reaction and precision

ii) the equilibrium features larger amplification of the exogenous shocks as they get smaller in

variance, iii) a unique equilibrium exist no matter how small is σ. However, it is clear that at

the limit σ → 0 this equilibrium is distinct from the perfect information equilibrium, which

obtains at the strictly higher value a = γ−1: a multiplicity obtains at the limit!

The question in this case is whether responsiveness grows fast enough to offset shrinking

shock. But the variance of the average expectation cannot go to zero, or else we have perfectly-

revealing signal and a = γ−1; since this value is not feasible in the rand 0, (1− gamma)−1, it

must be that signal is not perfectly revealing in the limit, which can only happen with infinite

amplification. Panel (d) of figure 2 illustrates the statement. Consumption volatility in the
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“high” equilibrium case converges to zero as σ−1 goes to infinity. By contrast, consumption

volatility in the “middle” and “low” equilibria converges to a positive, finite number in the

limit of zero variance of productivity shocks.

The nature of our multiplicity is therefore different with the more familiar complemen-

tarity mechanism studied in the literature (see literature review in the introduction for more

references). Note that, also in our case in the limit of vanishing exogenous noise the signal

is fully informative even when agents do not react to it. However with complementarity,

i.e. precision strictly increases with average reaction, this is a sufficient condition to the the

perfect information equilibrium being the unique equilibrium in the limit (as in Amador and

Weill (2010)).

Surprisingly, the low and middle limit equilibria have the same stochastic properties as

the extrinsic sentiment equilibrium described by Benhabib et al. (2015). In our case, how-

ever, fluctuations are driven by infinitesimally-small fundamental shocks, whose realizations

coordinate sizable fluctuations in agents’ expectations. We elaborate on the connection with

Benhabib et al. (2015) in Section 5.3.

4 Business cycle fluctuations

In this section, we show that many qualitative features of the business cycle can be explained

by our model. Our analysis also suggests that the learning-from-prices mechanism can quali-

tative change the comovement properties of fundamental shocks, implying that many common

strategies for disentangling shocks may give misleading results when learning from prices is

important.

4.1 Public News

Before proceeding to our analysis, we introduce an anticipated (common-knowledge) compo-

nent of aggregate housing productivity. The decomposition of productivity into a forecastable

and surprise component serves two purposes. First, it allows us to isolate the effects of the

learning channel in our model, as the forecasted component of productivity transmits as stan-

dard supply-side shock. Second, by combining the responses of the economy to forecasted and
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surprise productivity shocks, the model can generate a rich and realistic correlation structure

among business cycle variables.

Formally, we assume that the housing productivity innovation is composed of two inde-

pendently distributed components

ζ = ζn + ζs;

with ζn ∼ (N, σ2
ζn), ζs ∼ (N, σ2

ζs) and σ2
ζn + σ2

ζs = σ2
ζ . The first term (ζn) is a “news”

component; it corresponds to the forecastable component of productivity, and is commonly

known to all agents before their consumption choices are made. The second term (ζs) is

the “surprise” component; it is unknown to shoppers and they seek to forecast it using their

observation of prices.12 For future reference, let σ2
n ≡ σ2

ζn/σ
2
µ, and σ2

s ≡ σ2
ζs/σ

2
µ be the

normalized variances of the news and surprise components of productivity respectively.

Only modest modifications are necessary to characterize equilibrium in this general case.

Shoppers use the forecasted component to refine the information contained in the price sig-

nal by “partialing-out” the known portion of productivity. In particular, we can rewrite

households’ expectations as

E[µi|pi] = a(si − (1− γ)ζn), (30)

where si− (1− γ)ζn represents a new signal embodying the information available to the indi-

vidual household, after she has controlled for the effect of ζn. It follows that the equilibrium

values â and the conditions for their existence are isomorphic to the ones in the baseline

economy once σ2
s takes the place of σ2. For a given total variance of productivity, σ2, we

can now span the space between two polar cases, one in which productivity occurs as a pure

“surprise” to the case where the productivity shock is common-knowledge “news”. Thus,

overall co-movements in the economy will depend on the balance of forecastable and surprise

productivity, as well as the overall size of these shocks relative to local conditions.

12Chahrour and Jurado (2018) show that this information structure is equivalent to assuming that agents
observe a noisy aggregate signal, s = ζ + ϑ.
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Table 1: Business Cycle Comovements

GDP Cons Hours Res. Inv. House Pr Constr. Pr Constr. TFP

GDP 1.00 0.93 0.88 0.64 0.51 0.53 -0.17
Cons 1.00 0.80 0.65 0.47 0.47 -0.02
Hours 1.00 0.50 0.54 0.66 -0.35
Res. Inv. 1.00 0.62 0.37 -0.11
House Pr 1.00 0.81 -0.37
Constr. Pr 1.00 -0.43
Constr. TFP 1.00

Note: Data are real per-capita output, real per-capita consumption, per-capita hours in the non-farm business sector, real per-capita residential
investment, Case-Schiller real house price index, real price of residential investment, and relative TFP in the construction sector from the World
KLEMS databse (http://www.worldklems.net/data.htm). All data are annual log-levels, HP-detrended using smoothing parameter λ = 10. Date
range: 1960 to 2018, except for construction TFP which ends in 2010.

4.2 Demand-driven Fluctuations

Table 1 summarizes simple unconditional correlations between business cycle variables in US

data. Although this exercise is very simple, the table summarizes several facts that have

been documented by more sophisticated empirical analysis. The table indicates that business

cycles are dominated by demand-driven fluctuations with business cycle variables, housing

market prices, and residential investment all substantially co-moving. Meanwhile, structures

productivity is at best weakly related to any of these variables.

The emergence of demand-driven fluctuations in the model can be seen intuitively by

analyzing the aggregate demand and aggregate supply schedules in our economy. Using the

aggregate version of equations (10), (11), (15) and (17), we can express the aggregate demand

for consumption and aggregate demand and supply in the housing market as

c =

∫
E[µi|pi]di (AD:C)

δ = c− p, (AD:H)

δ =
αγ

1− αγ
p− α(1− γ)

1− αγ
ζ. (AS:H)

respectively. Because of the learning channel we know that aggregate consumption shifts

upwards in response to a correlated increase in price signals across island, i.e.

c =

∫
E[µi|pi]di = a(s− (1− γ)ζn).
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Bear in mind that the expression above means that c does not move with the news component

of housing productivity as it does not enter into the inference (it is in fact removed from the

price-signal), but only with the surprise.

To derive the implications shopper inference for housing demand, use p = (1 − α)v + αs

and v = c to express s = (p+ (1− α)a(1− γ)ζn)/((1− α)a+ α). Substituting the expression

for c into (AD:H) we get

δ =
α(a− 1)

(1− α)a+ α
p+

αa(1− γ)

(1− α)a+ α
ζn. (31)

When aggregate conditions do need feed into shoppers’ beliefs (a = 0), equation (31)

entails a standard downward-sloping aggregate demand relation in the housing market, and

consumption and working hours that are invariant to housing sector productivity. In contrast,

when learning from prices is sufficiently important—i.e. whenever a is larger than one—

equation (31) shows that δ and p must comove in response to surprise shocks.

Moreover, substituting (11) and (13) into (15) we get∫
nhi di =

∫
λit − E[λi|pi]di = c =

∫
ncidi. (32)

Equation (32) implies that an increase in consumption corresponds to an increase in work-

ing hours in both sectors. This occurs because shoppers have correlated perceptions of the

marginal value of consumption. In times of optimism, shoppers’ spending increases but wages

do not, so production increases.

To derive the model’s implications for empirical measures of house prices, which typically

include new and existing homes, we need derive the connection between p and the price of the

total housing stock, pHt . In the Appendix, we show that the price of each vintage moves with

shoppers expected Lagrangian, pit|k = −E[λit|pit]. This relationship is intuitive because the

supply of past vintages cannot adjust, so that prices must absorb any change in expectations.

We therefore find that pHt = κpt + (1 − κ)E[−λit|pit] where κ ∈ (0, 1) is the steady state

fraction of new houses in the total housing stock.

It is then straightforward to demonstrate the following.

Proposition 3. For σ2
s sufficiently small, surprise aggregate productivity shocks drive positive

comovement of consumption, employment (in both sectors), residential investment, prices for
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new and existing housing, commodity prices, and the price of land.

Proof. The results follows from continuity of the best-response function, and the observation

that limσs→0 a > 1 in the case of uniqueness (a→ 1/γ) or multiple equilibria (a→ 1/(1− γ)

or 1/γ).

In sum, our model exhibits comovements of aggregate business cycle variables in response

to sufficiently small productivity shocks, in any equilibrium and for any configuration of

parameters. To an outside observer, the economy would appear to be buffeted by recurrent

shocks to aggregate demand. The reason productivity shocks need to be sufficiently small is

that, as aggregate productivity shocks shrink, the informational value of the price signal rises,

leading agents’ beliefs about their local conditions to respond more strongly to it. Stronger

aggregate effects on beliefs eventually lead the informational channel of prices to dominate,

so that consumption increases in response to higher house prices. In this way, learning from

prices provides a new mechanism for generating expectations-driven demand shocks in an

economy hit only by fundamental shocks to productivity.

With a few additional lines of algebra, it is possible to solve for consumption, residential

investment, and the price of new housing as functions of shocks and the equilibrium inference

coefficient:

c =
a(1− γ)

1− a(1− γ)
ζs (33)

p = α(1− γ)ζ + (1− αγ)c (34)

δ = −α(1− γ)ζ + αγc. (35)

The expressions above are useful for disentangling the direct effects of productivity from

the learning channel. Equation (33) shows that a correlated mistake due to a surprise in

aggregate productivity moves consumption. Equations (34) and (35) show how this change

in beliefs transmits into the housing market, moving prices for new housing and residential

investment in the same direction. The same equations also show that productivity shocks

affect the housing market through a neoclassical channel, driving prices and quantities in

opposite directions. As a result, consumption is correlated with the housing market only via

the surprise component of productivity, whereas prices and quantities in the housing market
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itself are correlated via the news component.

We note at this point that unconditional variance and conditional variance are not the

same, since ... For example...

4.3 Business cycles under unique equilibrium

In this section, we discuss the model’s business cycle properties when it has a unique equilib-

rium. We organize the discussion around three main pictures illustrating the business cycle

co-movements, amplification and the relation with productivity shocks implied by the model.

The objective is to show the potential of our simple model to qualitatively account for several

empirical patterns that typically require more cumbersome frictions to match.

While we do not undertake a full quantitative evaluation of the model, we wish to demon-

strate the mechanism can be very powerful for reasonable parameterizations of the model.

To this end, we calibrate a set of parameters to standard values and/or long run targets in

the data. We set the model period to year. We set β = 0.96 consistent with an annual real

interest rate of roughly 4%. We set φ = 0.66, to be consistent with 2013-2014 CPI relative

importance weight placed on shelter. Estimates of η, the elasticity of local labor demand,

range in the literature from below one (Lichter et al., 2015) to above twenty (Christiano et al.,

2005). We use η = 2 as a baseline, and note that the aggregate effects of changing η can be

offset one-for-one by changing the volatility of local productivity.

For the housing sector, we follow Davis and Heathcote (2005) in fixing α = 0.89 to match

the evidence of that land accounts about 11% of new home prices.13 We pick the residential

investment labor share parameter γ = .526 by computing the ratio of labor input costs to

materials and energy costs in the construction sector, using the Bureau of Labor Statistics

KLEMS data from 1997-2014. Finally, we select the volatility of local productivity shocks

relative to aggregate shocks to housing productivity std(µ̂i)/std(ζ) = 10, implying σ = .238.

13For existing homes, Davis and Heathcote (2007) find that land prices accounts for a larger portion of
home prices.
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Figure 3: Panels illustrate correlation and the unconditional volatility of business cycle vari-
ables as a function of the ratio between volatility of the forecastable and non forecastable
component for the baseline case of γ = 0.526.

Comovement in business cycle variables

Figure 3 plots the correlations and volatilities of several variables in the economy. On the

horizontal axis of each panel we vary the ratio between of the forecastable and non-forecastable

component of productivity, going from pure “surprise” on the left to pure “news” on the right,

holding the total variance of the shock constant.

Panel (a) of the figures plots the correlation of hours worked and house prices with resi-

dential investment. Towards the left of the panel, when productivity is mostly unanticipated,

our learning channel dominates: residential investment, house prices and consumption all

perfectly comove. Given the results derived above, this also implies comovement in hours in

both sectors, the average price of land, and the price of commodities.

By contrast, when productivity is largely commonly knowledge, prices and quantities

in the housing market exhibit the negative correlation associated with supply-fluctuations,

while consumption does not move. Therefore, the more housing productivity is anticipated,

the more the economy behaves like a standard real business cycle model. In between these

two extremes, the model generates positive but imperfect correlations, consistent with the

data report in Table 1.

Amplification

What is the role of the endogeneity of the signal in generating amplification in the model?

Panel (b) of Figure 3 plots the standard deviation of consumption relative to that of aggregate
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productivity, as a function of the share of productivity that is forecastable. The panel contrasts

two cases (i) the baseline model and (ii) the counter-factual case in which the price signal,

s̃i = γµi + (1− γ)ζs, excludes its dependence on q. This comparison is useful to evaluate the

role of q in amplifying the impact of surprise shocks. To highlight this aspect we also draw

the standard deviation of the surprise component of productivity, which by construction falls

from one to zero going from left to right.

The comparison is striking. With a completely exogenous price signal, the volatility of

consumption, while positive, would be strictly less than the volatility of the surprise com-

ponent of productivity. This is not the case for our baseline calibration, when the signal is

endogenous. The surprise component is amplified substantially, such that consumption re-

mains more volatile than aggregate productivity even when more than 90% of productivity

fluctuations are anticipated (near the middle of the horizontal axis.)

The source of amplification can also be seen in our analytical results via equation (33).

That equation shows there is a range of parameters where aggregate consumption responds

more than one-to-one to productivity shocks.14 Note that this is a peculiar feature of having

the price signal with endogenous precision and, in particular, of having the commodity price

q entering in local housing prices. One can easy verify that, with a constant q, the reaction

of expectations to productivity shocks cannot exceed the unity, provided γ > 1/2.15

Relationship with construction TFP

In our model, the noise in peoples’ inference comes from a fundamental shock: productivity

in the housing sector. One major advantage of our approach to microfounding information

is that it provides testable implications about how beliefs fluctuations should relate to this,

in principle, measurable economic fundamental. In this section, we explore whether the data

are indeed consistent with these implications. Our goal is not to argue that construction

productivity is the only driver of beliefs in practice, but instead to show that the model’s

implications are generally consistent with one direct measure of construction productivity.

To this end, the last column of Table 1 compares productivity in the construction sector

14This occurs when â ∈ (1/2(1− γ), 1/γ) with γ ∈ (1/2, 2/3) then ∂c/∂ζs > 1.
15To see, suppose that q is fixed, so that the price signal corresponds to si(0) in (27) having a precision

τ(0). Then E[µi|si(0)] = 1
γ

τ(0)
1+τ(0)si(0), so that ∂E[µi|si(0)]

∂ζ = 1−γ
γ

τ(0)
1+τ(0) < 1.
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Figure 4: Panels illustrate correlation and the unconditional volatility of business cycle vari-
ables as a function of the ratio between volatility of the forecastable and non forecastable
component for the case of γ = 0.45.

relative to aggregate productivity — the data analogue to ζ — using the USA KLEMS

productivity data assembled by Jorgensen et al. (2012). Overall, the column shows that this

measure of housing-sector productivity is negatively, but weakly, correlated with business

cycle variables. Most notably, residential investment is somewhat negatively correlated with

this measure of productivity, a result that would be difficult to reproduce in a full information

neoclassical environment.16

Panel (c) of Figure 3 illustrates the correlations of residential investment, the price of

housing, and consumption as a function of the ratio between the volatilities of the forecastable

and non forecastable component for the same calibration of the other panels. As in the

data, the equilibrium correlation between business cycle variables depend on the fraction of

anticipated productivity, and is in general not perfect. Correlations with total productivity are

imperfect because the two components of productivity – surprise and news – are transmitted

very differently in the economy. In particular, so long as a sufficient portion of productivity is

unanticipated, all of these variables are negatively correlated with productivity. When instead

productivity is mostly common knowledge, business variables exhibit the classical supply-side

fluctuations, consumption does not move, and residential investment and housing prices move

in opposite directions.
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4.4 Multiple equilibria: supply shocks or animal spirits?

In this section, we explore the properties of one of the equilibria when γ < 1/2 as an illustration

of the virtually unbounded amplification power of our mechanism. We focus on the low

equilibrium, characterized by a− in Proposition 2. As the proposition states, this equilibrium

generates sizable fluctuations in expectations even in the limit of σs → 0. We focus on this

equilibrium because it turn out to be learnable in the sense of the adaptive learning literature

(see the proof in Section 5.4.)

In Figure 4 we present correlations and amplification plots for the case of the low equi-

librium, changing only γ = 0.45 with respect to our baseline calibration. Panel (b) shows

that, in contrast to our original calibration, consumption remains roughly twice as volatile

as realized productivity even as the variance of its surprise component goes to zero. This

happens because even infinitesimal surprises drive large fluctuations in beliefs. Note also that

the endogeneity of the price signal is crucial to this result: if inference were based on the

counter-factual signal s̃i that excludes q, the model would deliver some fluctuations in con-

sumption, but these would disappear as the size of the surprise component in productivity

shrinks.

To understand the economic reasons behind this powerful amplification, note that for a

approaching 1/(1 − γ), the slope of the aggregate demand in the market for new housing

(31) approaches the one for the aggregate supply (AS:H). This configuration delivers extreme

price-quantity comovements even after vanishing shocks to either curve.

Since belief fluctuations do not disappear with σs in this parameterization of the model,

it has very different implications for the correlation of consumption and house prices with

residential investment. In particular, these variables all remain positively correlated even

when nearly all of realized productivity is anticipated. The relation of these variables with

productivity is also affected. As more of productivity is anticipated, the correlation of con-

sumption and the price of existing housing, which driven by the expectational component,

approaches zero. I don’t think I understand these lines yet. On the other hand residential

investment does not go full way to negative correlation as the expectation component continues

to explain fraction of its volatility.

16Fernald et al. (2014) also find evidence that investment-specific productivity has contractionary effects.
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In the limit of a small surprise component, housing prices and residential investment are

moved by infinitesimal productivity surprises. An econometrician looking at the data gener-

ated by our model would be unable to measure such small changes in fundamentals and would

probably conclude that the housing market is moved by animal spirits in the vein of Burnside

et al. (2016); Shiller (2007) or sentiments as in Benhabib et al. (2013). Our model shows

how demand-driven waves can be the result of extreme amplification of small fundamental

shocks sustained by the feedback loop of learning from prices. The difference, which from an

empirical point of view may seem irrelevant, is instead sharp from a theoretical point of view:

the degree of optimism or pessimism in the economy in our model is actually determined by

(potentially small) fundamental changes rather being totally erratic or “animal”.

4.5 Evidence from survey data

The essential feature of our model is that people’s expectations about their future prospects

depend on their own market experiences, particularly in the housing market. We provide here

one piece of evidence from survey data that suggests this mechanism may be important in

the data.

To this end, we used evidence from the Michigan Survey of Consumer Expectations.

Survey participants are asked each month about (i) the perceptions of local house price growth

over the last year (ii) what they expect regarding their real income growth over the coming

year and (iii) whether they have heard good or bad news about overall economic conditions in

the economy. The survey then produces index numbers from the answers to these questions,

essentially subtracting those who experienced/expect/heard about negative outcomes from

those who have experienced/expect/heard positive ones.

Panel (a) of Figure 5 plots the autocorrelation structure of people’s current expectations

about future income, with respect to their recent experiences in the housing market. Negative

numbers on the horizontal axis reflect past responses to the housing experience question, while

positive numbers reflect future response to the housing experience question. The figure shows

that their two series are extremely strongly correlated, with past housing experiences leading

income expectations by roughly half a year (as measured by the peak correlation.) This result

suggests a strong connection between peoples’ past experiences in the housing market and
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(a) Income expectations at time t vs house
price experiences at time t+ h.
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(b) Income expectations at time t vs economic
news heard t+ h.

Figure 5: Auto-correlations of survey measure of own income expectations with respect to
own house price experience (panel a) and with respect to news heard about the economy
(panel b).

their expectations about their own income, exactly as our model predicts.

By contrast, Panel (b) of the figure plots the autocorrelation structure of peoples’ current

expectations of their own income with respect to what they report having heard about aggre-

gate economic developments. The correlation in this picture is much smaller than in Panel

(a), suggesting that whatever people have heard about the aggregate economy (if they’ve

heard anything) plays a much smaller role in forming peoples’ expectations about their own

prospect.

While these results are far from dispositive on the merits of our mechanism, we think

they provide some initial evidence that the learning from price mechanism is plausible in the

context of housing.
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5 Extensions

This section presents several extensions to the basic setup, showing that the insights of the

main mechanism are robust to various modeling details. In Section 5.1, we explore the impact

of contemporaneous and future aggregate shocks to consumption production, which in our

model is equivalent to a shock in housing spending. In Section 5.2, we allow households to

observe additional private information about local conditions and show that our results do

not rely on excluding exogenous sources of information. In Section 5.3, we explore whether

extrinsic noise may drive fluctuations jointly with aggregate productivity and conclude that

this is never the case. Finally, to address concerns about the plausibility of learning from

prices equilibria, Section 5.4 studies the issue of stability under adaptive learning for the

various equilibria of the baseline model.

5.1 Aggregate shocks in consumption production

For this extension, we modify the production function of the consumption sector to allow for

aggregate shocks to labor productivity,

Yt = ζ̃ct

(∫
eµ̃it/ηN c

it
1− 1

η di

) 1

1− 1
η
. (36)

The consumption productivity shock is ζct ∼ N(0, σζ) and is an i.i.d. disturbance. To simplify

our exposition, we focus on time t and assume that workers in island i, but not shoppers,

know {ζct+1, ζ
c
t , µit+1} and abstract from the presence of other aggregate shocks. A few lines

of algebra shows that

λit = −ωµµit+1 − ωbbit − ζct (37)

We note immediately that a contemporaneous productivity shock in consumption is equiv-

alent to an increase in consumption spending (measured in consumption units). Given the

properties of log utility, an increase in consumption spending induces an increase in hous-

ing spending as well. In other words, a productivity shock to consumption production is

equivalent to an exogenous demand shock in the housing sector.

Including the future realization of aggregate productivity helps to clarify that the model

cannot generate demand shocks in the form of news about aggregate productivity as in Loren-
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zoni (2009). To see that notice that in this case,

rt = λt − λt+1 = −ζct + ζct+1. (38)

Thus, the real interest rate adjusts to equalize the return on savings in the two periods.

Therefore, the anticipation of higher productivity in the future has no effect on consumption

choices today. This is a feature that our model shares with frictionless real economies, as

Angeletos (2018) clarifies. In contrast to our approach, in Lorenzoni (2009) news about

future productivity create a demand shock because of the presence of nominal rigidities and

monetary policy is suboptimal. A corollary to this result is that no current variable in the

economy, other than the real interest rate moves with anticipated aggregate consumption

shocks, so shopper will not be able to learn them in advance.

Contemporaneous consumption productivity shocks, by contrast, influence the marginal

value of current budget resources. In particular, higher current productivity decreases the

marginal value of households resources pushing up the real wages demanded by workers. In

appendix we show that the price signal in this case is:

sit = γ(µit+1 + ζct ) + (1− γ)

∫
E[µit+1 + ζct |sit]di, (39)

where, as in the main text, we have presented the case limβ→1 ωµ = 0 and normalized µ̃it+1

by ωµ.

One again, correlated fundamentals generate confusion between the idiosyncratic and com-

mon components of the signal. As before, the individual expectation of a household of type

i is formed according to the linear rule E[µit+1 + ζct |sit] = a∗si. Hence, the signal embeds the

average expectation, which again causes the precision of the signal to depend on the average

weight a. Following the analysis of the earlier section, the realization of the price signal can

be rewritten as

si = γµit+1 +
γ

1− a(1− γ)
ζct , (40)

where a represents the average weight placed on the signal by other shoppers. The average

expectation is given by ∫
E[µit+1 + ζct |sit]di =

γa

1− a(1− γ)
ζct , (41)
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which is slightly different from (26). The shopper’s best response function is now given by

a∗(a) =
1

γ

(
(1− a(1− γ))2 + (1− a(1− γ))σ2

(1− a(1− γ))2 + σ2

)
. (42)

While the best-response function in equation (42) is slightly different than in (28), the

characterization of the limit equilibria is identical.

Proposition 4. In the limit σ2
µ → 0, the equilibria of the economy converge to the same

points as the baseline economy. For γ > 1/2: there exists a unique equilibrium â such that

limσ2
ζc→0 a

µ = γ−1 with limσ2
ζc→0 σ

2
c = 0. For γ < 1/2 instead three equilibria exist such that

lim
σ2
ζc→0

â ∈ {a−, a◦, a+} with lim
σ2
ζc→0

σ2
c (â) ∈ {σ2

c (a−), σ2
c (a◦), σ

2
c (a+)}.

Proof. Postponed to appendix.

The proposition has a straightforward intuition. In the limit of small productivity shocks,

it does not matter if those perturbations emerge from the consumption or housing sector.

Hence, Proposition 3 follows identically, and the proof proceeds in parallel with only obvious

algebraic substitutions.

The important difference with respect to our baseline model is that, in this case, our

mechanism is amplifying an otherwise smaller demand driven fluctuation. In other words,

under perfect information a shock to consumption productivity would already translate into

a smaller, but still correlated, movement in business cycle variables. To see this, rewrite

aggregate consumption of residential investment and consumption in the case of perfect in-

formation: c = ζct and ht = −λt − p = (1− γ)ζct , which says that residential investment, the

price of new housing and consumption move together even under perfect information. There-

fore, having focused our main discussion on the case of aggregate productivity shocks in the

housing markets has the merits of showing that, not only our mechanism is able to generate

high amplification of fundamental shocks, but also can dramatically affect the transmission

of shocks in the economy.

5.2 Signal extraction problem with private signals

Here we show that the signal extraction problem, and corresponding equilibria, are not qual-

itatively affected by the availability of a private signal about the local shock. Instead, the
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addition of private information maps into our analysis of Section 3.3 as an increase in the

relative variance of aggregate shocks.

Let us assume that a household j ∈ (0, 1) in island i has a private signal

ωij = µi + ηij (43)

where ηij ∼ N(0, ση) is identically and independently distributed across households and is-

lands. In this case, households form expectations according to

E[µi|pi, ωij] = a

(
γµi + (1− γ)

(∫
E[µi|pi, ωij]di− ζ

))
+ b (µi + ηij) ,

where b measures the weight given to the additional private signal. Averaging out the relation

above and solving for the aggregate expectation gives∫
E[µi|pi, ωij]di = − a (1− γ)

1− a (1− γ)
ζ,

which is identical to (25). However, now we need two optimality restrictions to determine a

and b. These are

E[pi(µi − E[µi|pi, ωij])] = 0 ⇒ γσµ − a

(
γ2σµ +

(1− γ)2

(1− a (1− γ))2σζ

)
− bγσµ = 0,

E[ωij(µi − E[µi|pi, ωij])] = 0 ⇒ σµ − aγσε − b (σµ + ση) = 0,

which identify the equilibrium a and b such that each piece of information is orthogonal with

the forecast error. Solving the system for a, we get a fix point equation written as

a =
γ

γ2 + (1−γ)2

(1−a(1−γ))2
σµ+ση
ση

σζ
σµ

. (44)

For ση →∞, the right-hand side of the relation above matches (28). In particular, it follows

that a lower ση in (44) is equivalent to considering a larger σζ in (28). The analysis of the

baseline model thus applies directly to this generalization, and small amounts of exogenous

private information do not qualitatively change any of our earlier results.

5.3 Relation with Sentiments

A natural question, given the results in Proposition 2, is whether errors driven by extrinsic

shocks can coexist with the fundamental-driven fluctuations in aggregate beliefs captured by

our model. The next proposition demonstrates that, in fact, extrinsic sentiments are always
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crowded-out by common shocks to productivity.

Proposition 5. Suppose that ∫
E[µi|pi]di = φζζ + φεε,

where φε is the equilibrium effect of an extrinsic sentiment shock, ε ∼ N(0, σ2
ε̃), not related to

fundamentals. Then, φε = 0 for any σ2 > 0.

Proof. Suppose not, i.e. suppose that∫
E[µi|pi]di = φζζ + φεε,

where φε is the equilibrium effect of an extrinsic sentiment shock, ε, not related to fundamen-

tals. Then, the price signal is equivalent to

pi = γµi + (1− γ) ((φζ + 1)ζ + φεε)

Using the conjectured weights a∗, we have∫
a∗pidi = a(1− γ)(φζ + 1)ζ + a(1− γ)φεε

implying that

φζ = a(1− γ)(φζ + 1)

φε = a(1− γ)φε

which cannot both be true unless φε = 0. Notice that, differently from the case with multiple

sources of signals studied by Benhabib et al. (2015) (section 2.8 page 565), in our case an

aggregate shock (our productivity shock) shows up directly in the signal, which ensures de-

terminacy of the average expectation. This is equivalent to say that the analysis in Benhabib

et al. (2015) is not robust to the introduction of correlation (no matter how small) in the vjt

shocks appearing in their endogenous signals.

The fundamental shock always dominates the extrinsic shock because its fundamental

nature gives it two channels — one endogenous and one exogenous — through which it

influences people’s information and, therefore, their actions. Intuitively, conjecture that the

average action reflects a response to both fundamental and extrinsic shocks. In equilibrium,

agents respond to the average expectation, and therefore proportionally to the conjectured
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endogenous coefficients for each shock. But agents also respond to the exogenous component

of the fundamental that appears in the price signal. Thus, any equilibrium must depend

somewhat more-than-conjectured on the fundamental relative to the extrinsic shock. This

guess and update procedure cannot converge unless the weight on the extrinsic shock is

exactly zero.

This logic highlights the fragility of the extrinsic version of sentiments, which are coordi-

nated by endogenous signal structures. For, any shock which tends to coordinate actions for

exogenous reasons will also benefit from the self-reinforcing nature of learning, thereby ab-

sorbing the role of belief shock for itself. Indeed, as we have shown above, the same equilibria

emerge if local shocks µi have any common component.

5.4 Stability analysis

Here, we examine the issue of out-of-equilibrium convergence, that is, whether or not an

equilibrium is a rest point of a process of revision of beliefs in a repeated version of the static

economy. We suppose that agents behave like econometricians. At time t they set a weight ai,t

that is estimated from the sample distribution of observables collected from past repetitions

of the economy.

Agents learn about the optimal weight according to an optimal adaptive learning scheme:

ai,t = ai,t−1 + γt S
−1
i,t−1 pi,t (µi,t − ai,t−1pi,t) (45)

Si,t = Si,t−1 + γt+1

(
p2
i,t − Si,t−1

)
, (46)

where γt is a decreasing gain with
∑
γt =∞ and

∑
γ2
t = 0, and matrix Si,t is the estimated

variance of the signal. A rational expectations equilibrium â is a locally learnable equilibrium

if and only if there exists a neighborhood z (â) of â such that, given an initial estimate

ai,0 ∈ z (â), then limt→∞ ai,t
a.s
= â; it is a globally learnable equilibrium if convergence happens

for any ai,0 ∈ R.

The asymptotic behavior of statistical learning algorithms can be analyzed by stochastic

approximation techniques (see Marcet and Sargent, 1989a,b; Evans and Honkapohja, 2001,

for details.) Below we show that the relevant condition for stability is a′i (a) < 1, which can

easily checked by inspection of Figure 2.
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It turns out that the unique equilibrium is globally learnable, that is, no matter the initial

estimate, revisions will lead agents to coordinate on the equilibrium. In case of multiplicity,

the high and low equilibrium are locally learnable, whereas the middle equilibrium is not.

Hence the middle equilibrium works as a frontier between the basins of attraction of the two

equilibria.

To check local learnability of the rational expectations equilibrium, suppose we are already

close to the resting point of the system. That is, consider the case
∫

limt→∞ ai,t di = â, where

â is one of the equilibrium points {a−, a◦, a+}, and so

lim
t→∞

Si,t = σ2
s (â) = γ2σ2

µ +
(1− γ)2

(1− â (1− γ))2σ
2
ζ . (47)

According to stochastic approximation theory, we can write the associated ODE governing

the stability around the equilibria as

da

dt
=

∫
lim
t→∞

E
[
S−1
i,t−1pi,t (µi,t − ai,t−1pi,t)

]
di

= σ2
s (â)−1

∫
E [pi,t (µi,t − ai,t−1pi,t)] di

= σ2
s (â)−1

(
γσ2

µ − ai,t−1

(
γ2σ2

µ +
(1− γ)2

(1− at−1 (1− γ))2σ
2
ζ

))
= ai (a)− a. (48)

For asymptotic local stability to hold, the Jacobian of the differential equation in (48) must

be less than zero at the conjectured equilibrium. The derivative of ai(a) with respect to a is

given by:

a′i(a) = − 2γ (1− γ)3 (1− (1− γ) a)σ2(
(1− γ)2 σ2 + (1− (1− γ)a)2 γ2

)2 , (49)

which is positive whenever a > (1 − γ)−1. Then, necessarily, a′i(a◦) > 1, a′i(a+) ∈ (0, 1),

a′i(a−) < 0 and a′i(au) < 0. This proves that the low and unique equilibrium are respectively

locally and globally learnable.

6 Conclusion

Learning from prices has played an important role in our understanding of financial markets

since at least Grossman and Stiglitz (1980). Yet, learning from prices appeared even earlier
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in the macroeconomics literature, including in the seminal paper of Lucas (1972). Never-

theless, that channel gradually disappeared from models of the business cycle, in large part

because people concluded that fundamental shocks would be almost completely revealed be-

fore incomplete knowledge about them could influence relatively slow-moving macroeconomic

aggregates.

In this paper we have shown that, even if aggregate shocks are nearly common knowledge,

learning from prices may still play a crucial role driving fluctuations in beliefs. In fact, the feed-

back mechanism we described is strongest precisely when the aggregate shock is almost, but

not-quite-fully, revealed. Endogenous information structures can deliver strong multipliers on

small common disturbances, and thus offer a foundation for coordinated, expectations-driven

economic fluctuations. Such fluctuations are completely consistent with rational expectations.

Moreover, the key feature of our theory is also a feature of reality: agents observe and draw

inference from prices that are, themselves, influenced by aggregate conditions.

We have applied this idea to house prices, because these are among the most salient prices

in the economy. Even if the economy is driven only by productivity shocks, we have shown

that this mechanism captures several salient features of business cycles and its close correlation

with the evolution of the housing market. Our approach is consistent both with the evidence

that productivity and endogenous outcomes are weakly correlated and our results suggest that

the relationship between supply and demand shocks is more subtle than typically assumed in

the empirical literature. Future empirical work may wish to take in account the implications

of price-based learning.
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A Model

A.1 The extended version

In this section, we introduce and solve the model in its extended version. The representative
Household living in island i has the following utility function∑

βtΘt

(
log
(
Cφ
itH

1−φ
it

)
− vc (N

c
it)

1+χc

1 + χc
− vh

(
Nh
it

)1+χh

1 + χh

)
and faces the budget constraint,

1

Rt

Bit + Cit + Pit∆it = W c
itN

c
it +W h

itN
h
it +Bit−1 + Πc

it + Πh
t .

In this new version we consider the case the household may be hot by a “demand” shock Θt

such that log Θt ≡ θ ∼ N(0, σθ). We also consider convex disutility of labor with potential
different curvatures for working hours supplied in the consumption sector and the housing
sector, parametrised respectively by χc and χh. We need therefore to differentiate between
wages in the the two sectors, which we do by introducing W c

it and W h
it , and dropping the labor

market clearing condition.
In the competitive consumption sector we introduce the possibility of an aggregate pro-

ductivity shock and decreasing return to scale. The new technological constraint is given
by

Yt = eζ̃
c
t (N c

t )
αc ,

and

N c
t ≡

(∫
eµ̃it/ηN c

it
1− 1

η di

) 1

1− 1
η

where ζ̃ct = ζ̃ct−1 +ζct where ζct is an iid innovation drawn from a normal distribution N (0, σζc),
and αc ∈ (0, 1) measures economies of scale. We denote by W c

t the price of N c
t such that

W c
tN

c
t =

∫
W c
itN

c
itdi. The rest of the model is as in the main text. The version presented in

the main text obtains fixing χc = χh = 0, vc = vh, σζc = 0 and αc = 1.

A.2 Complete list of equilibrium conditions

We list here all the equilibrium conditions under full information at a given time t. The first
order conditions for household are:

Λit = βΛi,t+1Rt

ΘtφC
−1
it = Λit,

ΘtW
c
it = Λ−1

it N
χc
it

Optimality in the production of non-durable consumption requires

N c
it = eµ̃it

(
W c
it

W c
t

)−η
N c
t

N c
tW

c
t = αcYt

Yt = eζ
c
t (N c

t )
αc .
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One can easily check that

∂Ui0
∂∆it

= (1− ψ)(1− φ)
∞∑
τ=t

((1− d)βψ)τ−t∆−1
it =

(1− ψ)(1− φ)

1− (1− d)βψ
∆−1
it . (1)

The first order conditions for the housing market are then

(1− ψ)(1− φ)(1− (1− d)βψ)−1∆−1
it = ΛitPit,(

Nh
it

)χh = ΛitW
h
it

ZitQt = α(1− γ)Pit∆it,

Nh
itW

h
it = γαPit∆it

VitLit = (1− α)Pit∆it

where technology is given by

∆it = L1−α
it

((
Nh
it

)φ (
e−ζ̃tZit

)1−φ
)α

with a market clearing condition
∫
Zitdi = Zt. The budget constraint

1

Rt

Bit + Cit + Pit∆it = W c
itN

c
it +W h

itN
h
it +Bit−1 + Πc

t + Πh
it

must hold as an equality and the transversality condition

lim
τ→∞

R−1−τBit+τ = 0,

must hold at the individual level. Finally market clearing for the endowment reads as:

Zt =

∫
Zitdi, (2)

where keeping track of Zt will help us making clear that productivity shock in housing pro-
duction could be interpreted equivalently in changes in the supply of raw capital. Market
clearing conditions (8) - (9) complete the list of equilibrium conditions.

A.3 Linearized Model

In the following subsection we will introduce log-linear relations. At any time t, we will keep
distinct the expectations of shoppers – denoted by Ei,c

t [·] – and the ones of workers – denoted
by Ei,w

t [·] – to demonstrate some interesting properties of the model. Let us list first the
equations at the island level. The first order conditions for the consumption sector and bond
holdings are:

Ei,w
t [λit] = Ei,w

t [λit+1] + rt (3)

−cit = Ei,c
t [λit] (4)

χcn
c
it = Ei,w

t [λit] + wcit (5)

ncit = µ̃it − η (wcit − wct ) + nct (6)

nct + wct = yt (7)

yt = ζ̃ct + αcn
c
t . (8)
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The first order conditions for the housing market are

−δit = Ei,c
t [λit] + pit, (9)

χhnit = Ei,w
t [λit] + whit (10)

zit + qt = pit + δit, (11)

nhit + whit = pit + δit (12)

vit = = pit + δit (13)

where technology is given by

δit = (1− α)li + (αγ)nhit + α (1− γ)
(
−ζ̃t + zit

)
. (14)

We log-linearize the budget constraint here. At the individual level we have

1

Rt

Bit + Cit + Pit∆it + PitHit−1 =

= W c
itN

c
it +W h

itN
h
it + Yt −W c

tN
c
t︸ ︷︷ ︸

Πct

+PitHit −W h
itN

h
it −Qt (Zit − Zt) + Vit︸ ︷︷ ︸

Πhit

+PitHit−1 +Bit−1

1

Rt

Bit + (Cit − Yt)− (W c
itN

c
it −W c

tN
c
t ) = −Qt (Zit − Zt) +Bit−1

We consider a linearization computed from the situation of the economy at time t = 0 before
shock realize, in which Bit = 0 for all i, hence we linearize around Bit and log-linearize for
other variables.

In such a steady-state, all of the terms in parenthesis above are zero, so that the lineariza-
tion is

βbit + C(cit − ct) = C(wcit − wct ) + C(ncit − nct)−Q(zit − zt) + bit−1, (15)

where capital letters denote steady states values. Finally market clearing conditions read as:
zt =

∫
zitdi,

∫
bitdi = 0 and ct = yt.

A.4 Solution

This section shows the analytical solution of the model in this extended version. We also
generalise our shock structure by introducing a news about future aggregate productivity. To
demonstrate some properties of our model, we focus on time t and we assume that in the
second stage the worker-saver i knows the current housing productivity, current and future
consumption productivity and local productivity, i.e. Ωt = {ζt, ζct , ζct+1, µit+1}. We also assume
that shoppers only observe pit at time t and share the information set of the worker-saver at
time t+ 1.
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A.4.1 Solution from t+ 1 onwards

Derivation of λit+1. Manipulating first order conditions, one finds that:

pi,t + δit = −Ei,c
t [λit] = cit,

qt = −
∫
Ei,c
t [λit]di− zt = ct − zt,

zit − zt = cit − ct,
for any t, which we will use in the following. The transversality condition at the individual
level requires that we focus on the stationary solution bit+1 = bit, with bit being predetermined
in the t period. We first use the budget constraint to characterise the solution as follows:

(C +Q)(cit+1 − ct+1)− (1− β)bit = C(µit+1 − η
(
wcit+1 − wct+1

)
) + C(wcit+1 − wct+1)

or

(C +Q)(cit+1 − ct+1)− (1− β)bit = Cµit+1 + (1− η)C(wcit+1 − wct+1).

We use relations at the aggregate level to get ct+1 = wct+1 = ζct+1, Ei,w
t+1[λit+1] = Ei,c

t+1[λit+1] =
−cit+1 and nt+1 = 0 to establish

(C +Q)(cit+1 − ζct+1)− (1− β)bit =

= Cµit+1 + (1− η)C

 χc
1 + ηχc

µit+1 +
1

1 + ηχc
cit+1 +

ηχc
1 + ηχc

ζct+1︸ ︷︷ ︸
wit+1

−ζct+1


that becomes(

C
η(1 + χc)

1 + ηχc
+Q

)
(cit+1 − ζct+1) = C

(
1 +

(1− η)χc
1 + ηχc

)
µit+1 + (1− β)bit.

So that we finally get (remember bit+1 = bit)

λit+1 = −cit+1 = −ωµµit+1 − ωbbit − ζct+1,

where

ωµ =
C
(

1 + (1−η)χc
1+ηχc

)
C η(1+χc)

1+ηχc
+Q

> 0, and ωb =
1− β

C η(1+χc)
1+ηχc

+Q
> 0.

As stated in the main text, notice that limβ→1 ωb = 0.

A.4.2 Solution at time t

Derivation of λit. The first step is finding out an expression for λt. One can use:
χcnt = λt + wt and wt = ζct + (αc − 1)nt to get

(1− αc + χc)nt = λt + ζct

and then ct = ζct + αcnt to get a relation between the actual aggregate lambda and shoppers’
expectations

λt = −1− αc + χc
αc

∫
Ei,c
t [λit]di−

1 + χc
αc

ζct .
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Note that this expression is valid also for future times. In fact, under the assumption that
uncertainty vanishes after the first period, i.e.

∫
Ei,c
t+1[λit+1]di = −ζct+1, we have that λt+1 =

−ζct+1 which is consistent with what we have found above. In this case, the Euler equation
implies,

rt = λt − λt+1 = −1− αc + χc
αc

∫
Ei,c
t [λit]di−

1 + χc
αc

ζct + ζct+1.

Note that in the quasi linear case (χc = 0 and αc = 1) actual lambda is independent of
consumers’ expectations, and the above equation reduces to (22).

Given the Euler equation must hold at the local level, we have the following

λit = −ωµµit+1 − ωbbit − ζct+1︸ ︷︷ ︸
=λit+1

+rt = −ωµµit+1 − ωbbit +
1− αc + χc

αc
ct −

1 + χc
αc

ζct (16)

The equation above shows that the anticipation of future aggregate productivity does not af-
fect the marginal valuation of current consumption. This is a standard finding in real business
cycle model, where real interest rates neutralize the effect of anticipated aggregate produc-
tivity news. On the other hand current productivity moves the current marginal valuation
of current consumption. The case explored in the main text obtains in the quasi-linear case
αc = 1 and χc = 0.

Derivation of price for new housing. Here we derive the expression for the equilibrium
price of new housing. By simple algebra we get

pit + δit = −Ei,c
t [λit],

zit = −Ei,c
t [λit]− qt,

nhit =
1

1 + χh

(
λit − Ei,c

t [λit]
)

And the housing price gets

pit = −Ei,c
t [λit]− αγnit − α (1− γ) (−ζt + zit) ,

pit = −Ei,c
t [λit]− αγ

(
1

1 + χh

(
λit − Ei,c

t [λit]
))
− α (1− γ)

(
−ζt − qt − Ei,c

t [λit]
)
,

pit =

(
1− α(1− γ)− αγ

1 + χh

)
Ei,c
t [−λit] + α

(
γ

(
1

1 + χh
(−λit)

)
+ (1− γ) (ζt + qt)

)
︸ ︷︷ ︸

=si

.

The final step is substituting qt = −
∫
Ei,c
t [λit]di − zt in it to clearly see that an increase in

productivity (negative ζt) in the housing sector is isomorphic to an increase in the endowment
in raw capital (positive zt). The case in the text obtains for χh = 0.

Derivation of price of the stock of housing. In analogy with (1) we can derive the
price in consumption units P h

it|v of housing vintage ∆it|v as

P h
it|v = E[Λit|pit]−1 ∂Ui0

∂∆it|v
=

(1− ψ)(1− φ)ψt−v

1− (1− d)βψ
∆−1
it|vE[Λit|pit]−1, (17)
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for any v ≤ t. Therefore the price of the total stock of housing is given as

P h
it =

t∑
v=−∞

P h
it|v∆it|v

Hit

=
1− φ

1− (1− d)ψβ
E[Λit|pit]−1H−1

it (18)

which in log-terms gives

phit = −E[λit|pit]− κδit = (1− κ)E[−λit|pit] + κpit (19)

where κ = ∆̄/H̄ defines the steady state share of residential investment over existing housing
stock.

Derivation of bit. To compute bit (bear in mind that we are assuming bit−1 = 0 and
µit = 0 here) we re-consider the same step leading to (16) at time t where now µit = bit−1 = 0
to get:

(C +Q)(cit − ct) + βbit = (1− η)C(wcit − wct )

or

(C +Q)

(
−Ei,c

t [λit] +

∫
Ei,c
t [λit]di

)
+ βbit = (1− η)C(−λit + λt).

Use the fact −Ei,c
t [λit] = asi, where si is defined as above, to get

(C +Q)

(
a

γ

1 + χh
(ωµµit+1 + ωbbit)

)
+ βbit = (1− η)C(ωµµit+1 + ωbbit)(

(C +Q)a
γ

1 + χh
ωb − (1− η)Cωb + β

)
bit =

(
(1− η)C − (C +Q)a

γ

1 + χh

)
(ωµµit+1)

and finally

bit =
−(1 + χh)(η − 1)C − (C +Q)aγ

(C +Q)aγωb + (1 + χh)(η − 1)Cωb + (1 + χh)β
(ωµµit+1),

so that

λt − λit = ωµµit+1 + ωbbit =

= ωµµit+1 + ωb
−(1 + χh)(η − 1)Cωµ − (C +Q)aγωµ

(C +Q)aγωb + (η − 1)(1 + χh)Cωb + (1 + χh)β
ωµµit+1

=
(1 + χh)β

(C +Q)aγωb + (1 + χh)(η − 1)Cωb︸ ︷︷ ︸
≡f(a,β)

+(1 + χh)β
ωµµit+1. (20)

Remark: Given that ωb is a decreasing function of β, we can conclude that a higher a or
lower β strictly increases f(a, β), and so it strictly decreases the volatility of the idiosyncratic
component of λit, namely V ar(λt − λit). This remark will be useful in the following proof.
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A.5 Proofs of Propositions

Proof of Proposition 1. Let us first solve the case for which σ is exogenous and fixed which
corresponds to the limit case β → 1. The fix point equation reads as

a∗(a) =
1

γ

τ(a)

1 + τ(a)
=

1

γ

1

1 +
(

(1−γ)σ
γ(1−a(1−γ))

)2 =
γ (1− a (1− γ))2

γ2 (1− a (1− γ))2 + (1− γ)2σ2
(21)

To prove uniqueness for γ ≥ 1/2, observe that the function a∗(a) is continuous, bounded
above by γ−1, and monotonically decreasing in the range (0, (1− γ)−1). From γ ≥ 1/2, we
have (1− γ)−1 > γ−1. Thus a∗(a) intersects the 45-degree line a single time.

To prove the existence of a−, notice that lima→−∞ a
∗ = γ−1 and a∗((1− γ)−1) = 0. By

continuity, an equilibrium a− ∈ (0, (1− γ)−1) must always exist. Moreover a− must be
monotonically decreasing in σ2 as a∗ is monotonically decreasing in σ2.

We now assess the conditions under which additional equilibria may also exist. Because
lima→∞ a

∗ = γ−1 , the existence of a second equilibrium (crossing the 45-degree line in Figure
2) implies the existence of a third. Thus, we must determine whether the difference a∗(a)−a
is positive anywhere in the range a > (1− γ)−1. Such a difference is positive if and only if

Φ (σ) ≡ γ (1− a (1− γ))2 (1− γa)− a (1− γ)2 σ2 > 0, (22)

which requires a < γ−1 as a necessary condition. Therefore, if two other equilibria exist they
must lie in ((1− γ)−1 , γ−1). Fixing a ∈ ((1− γ)−1 , γ−1), limσ→0 Φ (σ) is positive, implying
that there always exists a threshold σ̄, and so a threshold σ̄ζ , such that two equilibria a+, a◦ ∈
((1− γ)−1 , γ−1) exist with a+ ≥ a◦ for σ2 ∈ (0, σ̄2).

Let us now consider β less than one. In this case, ωb 6= 0 and the variance of the idiosyn-
cratic portion of λit is also endogenous to a, as captured by the function f(a, β) in equation
(20). Since η > 1 and ωb > 0, it follows that f(a, β) is strictly positive and increasing in a
for all β < 1. In this case, we must replace σ with the endogenous variance σ(a, β) in the
fixed-point equation (A.5). Since the σ(a, β) > σ and is increasing in a, a∗(a, β) is weakly
below a∗(a) and any intersection (fixed point) a∗(β) must lie strictly to the left of the value
a∗ for the model with β → 1. Hence, if the economy has a unique equilibrium when β → 1 it
must also have a unique equilibrium β < 1. Moreover, since σ(a, β) increases with β, it must
be true that the threshold σ̄ for a multiplicity falls along with β.

Proof of Proposition 2. To prove the limiting statement for γ ≥ 1/2, consider any point
aδ = 1−δ

1−γ such that δ > 0. We then have

a∗(aδ) =
γδ2

γ2δ2 + σ2(1− γ)2.
(23)

Since limσ2→0 a
∗(aδ) = 1

γ
for any δ, the unique equilibrium must converge to the same point.

That the variance of this equilibrium approaches zero follows from equation (25).
To prove the limiting statement for γ < 1/2, recall the monotonicity of a∗(a) on the

range (0, (1 − γ)−1). Following the logic of Proposition 1, for any point aδ in that range,
limσ2→0 a

∗(aδ) = γ−1, while a∗((1 − γ)−1) = 0. Thus, the intersection defining a− must
approach (1 − γ)−1. An analogous argument for the point just to the right of (1 − γ)−1
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establishes that a− converges to the same value. Finally, the bounded monotonic behavior of
a∗(a) establishes that limσ2→0 a+ = γ−1 for the high equilibrium.

That the output variance of the high equilibrium in the limit σ → 0 is zero follows from
equation (26). The limiting variance of the two other limit equilibria can be established by
noticing that () implies

(1− γ)2a2σ2

(1− a(1− γ))2
= aγ(1− aγ) (24)

which gives (29) for a→ (1− γ)−1.

Proof of Proposition 4. We can prove that an equilibrium with no aggregate variance exists
for a = γ−1 by simple substitution in (42). The limiting variance of the other limit equilibrium
at the singularity a→ (1− γ)−1 can be established by noticing that (42) implies that

σ2

(1− a(1− γ))2
=

1− aγ
aγ

+
1− a(1− γ)

aγ

σ2

(1− a(1− γ))2
,

which gives

σ2

(1− a(1− γ))2
= −1− aγ

1− a
.

Substituted into (41), this gives the value of σ2
c in (29) for a→ (1− γ)−1.

A.6 Data Definitions
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