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Abstract

Conventional business cycle analysis interprets economic fluctuations as high

frequency variations around an exogenous trend. In contrast to this approach, we

include two sources of growth (ideas and knowledge) to determine the endoge-

nous trend of an economy, and examine its quantitative potential in a standard

medium scale New Keynesian model. We estimate this model on the US data be-

tween 1950q1-2018q4 with an occasionnally binding constraint on the nominal

rate. We find that the endogenous trend has been sharply declining since 1970,

thus corroborating the secular stagnation theory. This dynamic is captured by a

slowdown in the accumulation technology reflecting the low productivity of the

R&D sector. While the contribution of human capital has been remarkably stable,

the financial crisis deteriorated its contribution over the last decade.
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1 INTRODUCTION

In modern models of the business cycle, economic fluctuations are interpreted as high

frequency fluctuations around a trend growing at an exogenous rate (either deter-

ministic or stochastic). This conception of business cycles is questionable given the

strong body of evidence in empirical macroeconomics showing that the trend of the

US economy is time-varying (Nelson and Plosser (1982)) and reducing over time.1

Despite this evidence, most of recent medium scale macroeconomic models assume

either a fixed slope of growth (e.g., Smets and Wouters (2007)) or exogenous drifts to

productivity (e.g., Christiano et al. (2014)). The resulting interpretation of business

cycles is at odd with the evidence of structural changes in the long run growth of an

economy observed over the last decades. In particular, the underlying factors that are

jointly driving low frequency changes in macroeconomic time series are usually swept

out by business cycle filters, or erroneously captured by exogenous disturbances.

The main goal of this paper is therefore to develop a quantitative model that fea-

tures an endogenous slope of growth, referred to as an endogenous trend.2 Guided by

the endogenous growth theory, the trend at which the economy is growing at a low

frequency is determined by two growth engines based on the accumulation of ideas

and knowledge. For the first engine of growth based on the accumulation of ideas,

the endogenous productivity mechanism we develop is based on Comin and Gertler

(2006), which uses the approach to connect business cycles to growth. This model

of Comin and Gertler (2006) is itself a variant of Romer (1990)’s expanding vari-

ety model of technological change, modified to include a friction on the endogenous

probability of technology adoption. We include a sticky rate of adoption to capture

a congestion externality in the diffusion of new technologies. The second engine

of growth is based on the accumulation of knowledge (i.e., “experience” or “skill”),

through a model of human capital à la Lucas Jr (1988). Each period, firms engage

a fraction of their labor inputs into vocational training in order to produce human

capital. We modify the Lucas framework to allow for an endogenous rate of adoption

of new skills, along with endogenous human capital formation. By doing so, we are

able to allow for empirically reasonable diffusion lags but still generate endogenous

medium-term swings in productivity.

We then estimate the model with endogenous trend on a sample spanning from

1For a long run perspective on growth, see Antolin-Diaz et al. (2017) For recent papers after the
Great Recession documenting the slowdown of the US economy, see Fernald and Jones (2014) and
(Gordon, 2012, 2017).

2These cyclical movement are interpreted by Comin and Gertler (2006) as medium term fluctua-
tions. In this paper, I interpret these fluctuations as persistent changes in the growth rate of the economy
that affects key macroeconomic variables.
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1950q1 up to 2018q4 using Bayesian techniques. The solution method employed to

estimate the model features an occasionnally binding constraint on the nominal rate.

We then use the model to assess the slowdown of long term growth, in particular fol-

lowing the onset of the Great Recession. Based on the estimated model, our key result

is that we corroborate the thesis of a strong decline in the long term trend of the US

economy. Among the two sources of growth examined in the paper, the slowdown

mainly is induced by the technology engine reflecting a decline in the productivity

of creation of new technologies since 1960. This finding tends to favor the Gordon

(2012) theory stating that the US growth has strongly declined since 1970. In addi-

tion, we find that a standard macro-model with exogenous growth erroneously cap-

tures low frequency changes in economic growth by highly persistent macroeconomic

shocks. In contrast, the model featuring an endogenous trend successfully captures

this low frequency fluctuations. This endogenous persistence is key, as it allows the

model to outperform the forecasting performance of a DSGE model with an exogenous

trend.

In addition to the literature cited above, there are several other papers related to

our analysis. Anzoategui et al. (2019) estimates a macroeconomic model with one

source of growth for the US economy. They evaluate the role of R&D in the productiv-

ity slowdown following the financial crisis, they find that the reduction in productiv-

ity is induced by a reduction in the adoption rate of technology. Moran and Queralto

(2017) complete this analysis by including the role of monetary policy, in particular

when the ZLB is binding. Both Queralto (2019) and Bianchi et al. (2019) inspect the

role of financial frictions on knowledge accumulation to capture the recent slowdown

in economic growth for the US. An alternate approach of Garcia-Macia (2017) stresses

misallocation between tangible and intangible capital following a financial crisis. An-

nicchiarico and Pelloni (2016) inspect the implications of the endogenous growth on

the optimal conduct of monetary policy.

This paper is also related to a litterature that puts endogenous growth mecha-

nism into real business cycles models. Hercowitz and Sampson (1991) is probably

the first paper that attempts to connect the business cycles and endogenous growth.

They estimate their model as a VAR process and find that endogenous growth success-

fully accounts for the persistence of output growth. Boileau (1996) evaluates how

in an open economy context the endogenous growth mechanism helps the model in

replicating salient business cycle statistics. Barlevy (2004) revisited the welfare cost of

business under endogenous growth and finds that the presence of endogenous growth

exacerbates the welfare cost of business cycles. Similarly, Wu and Zhang (1998) re-

visited the welfare cost of inflation under endogenous growth. While most of this

literature adresses the question of growth as an expanding variety effect, Jones et al.
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(2005) originally consider growth as an accumulation of human capital.

The rest of the paper is organized as follows. section 2 presents a New Keynesian

Model with two sources of endogenous growth. section 3 is devoted to the estima-

tion of the model using Bayesian econometrics. section 4 evaluates the consequences

an endogenous rate of growth on the transmission of TFP shock, and the role of a

time-varying trend on the cross-correlation of observable variables. section 5 studies

the contribution of the accumulation of technologies and knowledge in the historical

evolution of the long run growth rate of the US economy since 1950. section 6 evalu-

ates the role of the zero lower bound on the economic contraction during the financial

crisis. section 8 concludes.

2 A NEW KEYNESIAN MODEL WITH TWO SOURCES OF ENDOGENOUS

GROWTH

This section describes the theoretical framework, consisting of a standard medium-

sized New Keynesian model augmented to include endogenous creation and adoption

of new technologies and human capital, respectively denoted At and Ht. The slope of

growth of the economy, denoted Γt, is thus a function of these two engines of growth,

with Γt = f (At, Ht). Sub-sections 2.2.3 and 2.4 constitute the main departures from

other medium-sized DSGE models found in the literature. The rest of the subsection

provides the conventional ingredients of the a New Keynesian model similar to Smets

and Wouters (2007).

2.1 HOUSEHOLDS

The preferences of the jth family are given by:

Et

{ ∞∑
τ=0

βτ

[
(cjt+τ − hcjt−1+τ )

1−σC

1− σC
exp

((
σC − 1

1 + σL

)
χLl

1+σL
jt+τ

)]}
(1)

where Et denotes the expectation operator and β ∈ (0, 1) is the discount factor. The

consumption index cjt is subject to external habits governed by parameter h ∈ [0; 1)

while σC > 0 is the risk aversion parameter on consumption. Parameter σL > 0 shapes

the consumption-leisure trade-off, while χL > 0 is a shift parameter pinning down the

steady state amount of hours worked.

Household j face a budget constraint:

cjt + bjt = bjt−1rt−1/πt + wthjtljt + Πjt − tjt, (2)
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The income of the representative household is made of labor income with real wage wt
combined with human capital hjt (or skills) and hours worked ljt, total firm profits Πjt,

real interest payments rt−1/πt from riskless bonds bjt, with inflation rate πt = Pt/Pt−1.

2.2 INTERMEDIATE FIRMS

2.2.1 Intermediate goods composite

There exists a continuum of measure At of monopolistically competitive intermediate

goods firms that each make a differentiated product. The endogenous variable At

is the stock of types of intermediate goods adopted in production, i.e., the stock of

adopted technologies. We assume that one firm produced one type of variety such

that i ∈ [0, At] both refers to a good or an intermediate firm. Each firms produces

produces output xit at a selling price pxit. The intermediate goods composite is the

following CES aggregate of individual intermediate goods:

Xt =

[∫ At

0

x
(ϑ−1)/ϑ
it di

]ϑ/(ϑ−1)

, (3)

where parameter ϑ > 1 is the degree of imperfect substitution between varieties al-

lowing intermediate firms to make profits. The aggregate price index is given by:

P x
t = [

∫ At
0

(pxit)
1−ϑdi]1/(1−ϑ). The optimal demand for the i-th varieties is given by:

xit = (pxit/P
x
t )−ϑXt. (4)

2.2.2 Production technology

There is a continuum of i firms that produces an homogenous good by combining

labor inputs, capital inputs and technology. The ith firm has the following Cobb-

Douglas technology:

xit = εAt
[
(1− eit) ldithωit

]α
[uitkit−1]1−α (5)

where (exogenous) AR(1) technology is εAt , hours worked demand ldit, human capital

hit, eit the fraction of the labor supply involved in the accumulation of knowledge, uit
is the utilization rate of physical capital and kit−1 is the physical capital. Parameter

α ∈ [0, 1] measures the labor intensity in the firms technology. Workers may spend a

fraction eit of their time acquiring skills. That is, they can learn to use more advanced

capital goods. Parameter ω ≥ 0 is the internal effect of human capital which benefits

to the overall economy. According to Mincer (1974), an additional year of schooling or
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an additional year of experience should increase wages proportionally. To incorporate

this mechanism in the model, we assume increasing returns on human capital, with

elasticity ω > 1.

Real profits are given by:

dxit =
P x
it

Pt
xit−wthitldit−εIt

(
1 + SI

(
iit

γtiit−1

))
iit−

P I
t

Pt

(
1 + SH

(
zHit
zHit−1

))
zHit −

P I
t

Pt
sHit h

u
it,

(6)

where εIi,t is a stochastic process which captures exogenous changes in the value of

physical capital, regarding adjustment cost functions Sa(xt)=χa(xt − x̄)2 with χa ≥ 0

is the adjustment cost parameter.

For clarity purpose, we separate production and labor decisions in the following

subsections.

2.2.3 Production and adoption of skills

As in Lucas Jr (1988), we assume that there firms can spent a fraction eit of working to

the accumulation of human capital while (1− eit) ldit is the skill-weighted man-hours

devoted to current production. The rise in more skilled worker does not necessary

translate into immediate growth of output. We capture this pattern by assuming that

all skills in the economy are not necessarily adopted by firms, this can interpreted as

an “education inflation”. Let us assume there is a stock of unadopted human capital,

denoted huit, given by:

huit = (1− δH)

[
FH
(
eit−1, z

H
it−1

)
+
(
1− pHit−1

)
huit−1

]
(7)

where δH is the obsolescence rate of a skill, FH (.) is the production function of new

human capital and pHt−1 is the endogenous probability of adoption of a skill by the i-th

firm. Regarding the adoption probability of a skill, our goal is to capture the notion

that adoption takes time on average, but allow for adoption intensities to vary pro-

cyclically. These considerations lead us to the following formulation for the functional

form: pHt = ςHt
(
sHit
)κH , where ςHt is a scaling factor that pins down the steady state in

the balanced growth path, sHit are the adoption expenditures in units of final goods.

As in Jones et al. (1993), human capital creation is a Cobb-Doublas function that

combines education hours eit and education expenditures zHit :

FH
(
eit, z

H
it

)
= ξHt (eit)

1−υ (zHit )υ (8)

where ξHt is a productivity parameter that pins down the steady state in the balanced
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growth path, υ is a technology parameter determining the intensity of education ex-

penditures in the production of knowledge. For υ = 0, the model reads as in Lucas,

while for υ > 0, the model is similar to the setup of Jones et al. (1993).

The law of motion of adopted skills, or effective human capital, is given by:

hit = (1− δH)
[
pHt−1h

u
it−1 + hit−1

]
(9)

Intermediate firms maximize their profits under Equation 6, the supply constraint

5, the demand constraint 4 and law of motions 7 and 9. Letting vUt and vHt denote

the Lagrangian multipliers associated with laws of motion of unadopted and adopted

human capital respectively. They represent the current marginal value of unadopted

and adopted skills, respectively.

The optimal fraction of hours worked spent in education eit is given by:

pxt
µϑ
α

xit
(1− eit)

= (1− δH)Et
{
mt,t+1V

U
t+1

}
F
′e
H,t, (10)

where F
′e
H,t is the derivative in education of the production function of knowledge

and V U
t is the value of unadopted skills. The left hand side of Equation 10 is the

productivity loss of increasing eit, while the right hand side denotes the expected

marginal product of unadopted skills. Parameter µϑ = ϑ/(ϑ − 1) is the markup over

the marginal cost of producing intermediate goods.

The optimal education spending zHit reads as:

1 +
∂SH,tz

H
it−1

∂zHit
+ Et

{
mt,t+1

∂SH,t+1z
H
it

∂zHit

}
= (1− δH)Et

{
mt,t+1V

U
t+1

}
F
′z
H,t, (11)

Similarly to the optimal education, the left hand side denotes the marginal cost of

education spending and the right hand side is the expected marginal product of un-

adopted skills.

In addition, the optimal amount of adopted human capital hit is given by:

V H
t =

pxt
µϑ
ωα

yit
hit
− wtldit + (1− δH)Et

{
mt,t+1V

H
t+1

}
(12)

The current value of human capital V H
t is determined by its marginal productivity, net

of wage payments, and the expected value of the adopted skill if the human capital

does not depreciate.
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The value of unadopted skills:

V U
t = (1− δH)Et

{
mt,t+1

[
pHt V

H
t+1 +

(
1− pHt

)
V U
t+1

]}
(13)

Finally the optimal demand for sHit is given by:

(1− δH)Et

{
mt,t+1

[
V H
t+1 − V U

t+1

]}
pH′t = 1 (14)

where pH′t is the derivative of the probability of adoption with respect to the quantity

of goods sHit spent in adoption of skills. The term on the right is the marginal gain

from adoption expenditures: the increase in the adoption probability pHt times the

discounted difference between the value of an adopted versus an unadopted skill. The

right side is the marginal cost. The term V H
t+1 − V U

t+1 is pro-cyclical, given the greater

influence of near term profits on the value of adopted skills relative to unadopted

ones.

2.2.4 Capital decisions

Intermediate firms maximize their profits under Equation 6 under the supply con-

straint 5 and the demand constraint 4 and the following law of motion of capital:

kit = iit + (1− δ (uit)) kit−1, (15)

where δ (uit) = δc + b
1+ψ

u1+ψ
it . In this function δc > 0 is the fixed part of the deprecia-

tion, while the time-varying part is a function of the utilization rate of capital. ψ ≥ 0

is the elasticity of the depreciation with respect to utilization. Parameter b ≥ 0 is a

shift parameter which allows to pin down the steady state utilization rate.

The first order condition determining the shadow value of investment goods is

given by:

qt = εIt

(
1 +

∂iitS (iit/iit−1)

∂iit

)
+mt,t+1ε

I
t+1

∂S (iit+1/iit) iit+1

∂iit
, (16)

where qt is the Lagrangian multiplier associated with the law of motion of physical

capital.

The optimal demand for physical capital is given by:

qt = Et

{
mt,t+1

[
pxt+1

µϑ
(1− α)

yit+1

kit
− (1− δ (uit+1)) qt+1

]}
. (17)
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The optimal utilization rate is given by:

(1− α)
yit
uit

pxt
µϑ

= δ′ (uit) qt (18)

2.3 FINAL FIRMS

A continuum of mass unity of final firms produce final output using intermediate out-

put as input. Each producer simply purchases intermediate output, differentiate and

sell them to final output consumers. Final output is a CES composite of differentiated

varieties

Yt =

[∫ 1

0

y
(ε−1)/ε
jt dz

]ε/(ε−1)

. (19)

where yit is the output by final firm z ∈ [0, 1] with an associated price denoted pjt. The

parameter ε, satisfying ε > 1, governs the extent of imperfect substitutability accross

final goods varieties. Cost minimization by final goods consumers implies a downward

sloping demand curve for each variety of final good

yjt = (pjt/Pt)
−ε Yt, (20)

where Pt is the aggregate price index determined by the zero profit condition in this

market: Pt = [p
(1−ε)/ε
jt dz]1/(1−ε). To introduce nominal rigidities, we employ a Calvo

pricing scheme. In particular, a fraction of final firms is not allowed to re-optimize

its selling price with probability θ but price increases by ξ ∈ [0; 1) with respect to the

previous period’s rate of price inflation, pjt = πξt−1π̄
1−ξpjt−1. The zth firm allowed to

update its selling price p∗jt with a probability 1−θ maximizes the following discounted

sum of profits

max
{p∗jt}

Et

{ ∞∑
s=0

θsmt,t+s

[
p∗jt
Pt+s

Ξt+s − εPt+s
Pxt+s
Pt+s

]
yzt+s

}
s.t. yzt+s = (p∗jtΞt+s/Pt+s)

−εYt+s

,

where εPt is an ad hoc cost-push shock to the inflation equation following an AR(1)

process which captures exogenous changes in input costs of final firms. Variable Ξt

captures the contribution of the indexation rule to the firm’s future profits, Ξt+s =∏s
j=1π

ξ
t−1+jπ̄

1−ξ for s > 0, while Ξt+s = 1 for s = 0.
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2.4 INNOVATORS

We model technology following Comin and Gertler (2006), which is in turn based

on the expanding-variety framework due to Romer (1990). Innovations in the model

take the form of new patents Zt which are discovered endogenously as a result from

private R&D spending. As Comin and Gertler (2006), patents are subject to a “time-

to-adop” friction: a new technology does not necessarily give birth immediately to a

new variety of intermediate goods. Converting a patent into a new variety is costly

for innovators and create a lag between the creation of a new technology and its

translation into an stronger rate of growth for the economy.

Assuming that among the family members of each household, there is a fraction

j ∈ [0; η] of innovators that creates new technologies.3 Each innovator owns a stock

of existing patents, denoted Zjt, representing the technological frontier in the econ-

omy. These technologies are subject to exogenous obsolescence, which occurs with

probability δA. Letting xAjt denotes R&D expenditures (in units of growth-oriented in-

vestment goods) devoted to the creation of a new patent, denoted υ(xAjt), the law of

motion of patents (or the “technological frontier”) are given by:

Zjt = (1− δA)
(
Zjt−1 + FA

(
xAjt−1

))
. (21)

Here, both existing and new patents are subject to the obsolescence shock, this implies

that some new technologies are abandoned and never translate into intermediate vari-

eties. Regarding the production of a new technology, we assume FA(xAjt) = εAt ξ
A
t (xAjt)

αA

where αA is a technology parameter, and ξAt pins down the growth rate of technology

in the balanced growth path. As suggested by Griliches (1990), the production of new

patent has decreasing return to scale (i.e. αA < 1) that captures a congestion effect

that raises the cost of developing new products as the aggregate level of R&D intensity

increases. This effects is usually referred to as the “stepping on toes”: i.e. the obvious

new ideas are discovered first and it gets increasingly difficult to find the next new

one (see Jones (2005) for a discussion).

Recall that Ajt is the number of varieties of intermediate goods, thus any point on

the real line between 0 and Ajt represents a distinct variety of intermediate goods.

With a time-to-adopt assumption, there is a gap between numbers of available and

adopted technologies, Zjt − Ajt > 0. This gap, denoted Aujt, is referred to as the stock

of unadopted technologies and has the following law of motion:

Aujt = (1− δA)
(
FA
(
xAjt−1

)
+
(
1− pA

(
sAjt−1

))
Aujt−1

)
. (22)

3The number of innovator pins down the steady state of R&D spending-to-GDP ratio.
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In this expression, pA (.) denotes the speed of adoption of an unadopted technol-

ogy, that is an increasing function of R&D spending sAjt−1 in units of growth-oriented

investment goods.4 If the adopter is not successful, he may try again in the next pe-

riod. Thus, under our formulation there is slow diffusion of technologies on average

that varies positively with the intensity of adoption expenditures. This endogenous

mechanism of adoption reproduces the cyclicality of technology diffusion that is ob-

served in the micro data, as shown by Anzoategui et al. (2016).

The remaining set of technologies Ajt that are effectively converted into an inter-

mediate goods are given by the following law of motion:

Ajt = (1− δA)
(
pA
(
sAjt−1

) (
1− SA

(
pAjt/p

A
jt−1

))
Aujt−1 + Ajt−1

)
(23)

where SA
(
pAjt/p

A
jt−1

)
denotes an adjustment cost on rising the probability of adoption

with SA (xt) = 0.5χA (xt − x̄)2 similar to Christiano et al. (2005). This cost function

is new with respect to the literature and has two goals. First, it captures another

congestion externality à la Romer (1990) on the adoption of a new technology: firms

trying to get a new product to market face a lower probability success. Second, this

cost aims at capturing the low frequency nature of Ajt: an higher value for χA implies

a lower frequency for the growth of technology χA. We are thus free to estimate this

cost parameter to match the evidence by setting a diffuse prior distribution on this

parameter. The fit exercise of Moran and Queralto (2017) shows that adjustment cost

on R&D expenditures are much larger than for investment goods.

The real profit of the innovator is given by:

ΠA
jt = Ajt

ΠX
jt

Pt
− P I

t

Pt
xAjt −

P I
t

Pt
Aujts

A
jt (24)

where ΠX
jt is the monopoly rent that the innovator obtain from selling an amount

Ajt of varieties of intermediate goods. At every stage of the innovation process, the

innovator successfully adopting a new technology exploits the competitive advantage

and monopolize the market as in Aghion and Howitt (1996). The innovator must

pay cost of adoption Aujts
A
jt and R&D expenditures xAjt in units of growth-oriented

investment goods at market price P I
t /Pt.

Each period maximizes the discounted sum of profits Equation 24 using control

variables xAjt, s
A
jt, Ajt, A

u
jt and pAjt under technology law of motions Equation 22 and

Equation 23. Anticipating symmetry, and letting JUt and JAt denotes the real shadow

4The functional form for pA
(
sAjt−1

)
= ςAt

(
sAjt−1

)κA is taken from Comin and Gertler (2006), pa-
rameter κA is the elasticity of adoption with R&D spending sAjt−1 while ςAt is a scaling factor pining
down the steady state in the balanced growth path of the model.
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values of unadopted and adopted technologies respectively, the value of adopted tech-

nologies is the present discounted value of profits from producing the good:

JAt = ΠX
t /Pt + (1− δA)Et

{
mt,t+1J

A
t+1

}
. (25)

While the value of unadopted technologies is determined by:

JUt = −P
I
t

Pt
sAt + (1− δA)Et

{
mt,t+1

[
JUt+1

(
1− pAt

)
+ JAt+1p

A
t

(
1− S

(
pAt+1/p

A
t

))]}
(26)

Firm invest xAt units of growth-oriented investment goods in R&D until the expected

marginal product of discovering a new patent reaches the marginal cost of production:

P I
t

Pt
= (1− δA) Φ′A

(
xAt
)
Et
{
mt,t+1J

U
t+1

}
. (27)

The marginal cost of rising the adoption rate, denoted qAt , reads as follows:

P I
t

Pt
Aut = qAt p

′
A

(
xAt
)
. (28)

Finally, optimal adoption rate is given by:

qAt
Aut

+ Ψt = (1− δA)Et
{
mt,t+1

[
JAt+1 − JUt+1

]}
(29)

The left hand side of this equation reflects the current marginal cost of adopting a

technology,5 while the right hand side is the discounted benefits in the next period.

Innovators increases their adoption expenditures until the marginal cost of adopting

is equal to the expected marginal gain. As Comin and Gertler (2006), this marginal

gain is JAt+1 − JUt+1 is pro-cyclical, given the greater influence of near term profits on

the value of adopted technologies relative to unadopted ones

2.5 AUTHORITIES

Concerning federal monetary policy, the general expression of the central bank’s rate

follows a standard Taylor rule:

rt = rρt−1

[
r̄
(πt
π̄

)φπ](1−ρ)(
Yt

Yt−1γ̄

)φG
εRt , (30)

5The term Ψt denotes the adjustment cost that must be paid by the innovator that makes the adop-

tion rate sluggish : Ψt = vAt (1− δA) pAt−1
∂S(pA

t /pA
t−1)

∂pA
t

Au
t−1

Au
t

+ (1− δA) vAt+1mt,t+1
∂pA

t S(pA
t+1/p

A
t )

∂pA
t

.
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where εRt is a monetary policy shock, φπ ≥ 1 is the inflation stance, φG is another

stance on deviations of production growth from its steady state γ̄. Recall that here,

changes in the medium term component, denoted γt, is affecting the nominal rate as

long as φG 6= 0. Following Gust et al. (2017), the smoothing of the rule is based on

the shadow rate rather than the effective interest rate, this allows the shadow rate to

go far beyond zero as suggested by Wu Miao. A REMPLIR

However, a ZLB constraint on the nominal rate generates a wedge between the de-

sirable interest rate for the economy and the effective one. The effective rate, denoted

rt, determining the rate of return of government bonds reads as:

rt = max (rt, 1) (31)

Regarding the government, it consumes Gt units of final goods. The government

supports these expenditures by issuing one-period debt securities, bt, and charging

a lump-sum tax to household, Tt. The government budget balance reads as: Gt +

bt−1rt−1/πt = bt + Tt. We assume that along the balance growth path, the share

of government purchases in output, denoted sg, is constant over time. To this end,

we impose Gt = ΓtsgȲ ε
G
t , where Γt is the time-varing trend of output, sgȲ is the

detrended steady state of public spending and εGt is an exogenous AR(1) capturing

exogenous changes in aggregate demand. The presence of Γt maintains the balanced

growth path by making the share of public spending stable as the economy grows.

2.6 MARKET CLEARING CONDITIONS

The aggregate constraint on final goods market is given by:

Yt
∆P
t

= Ct + Itε
I
t (1 + SI (·)) +

P I
t

Pt

(
IHt + IAt

)
+Gt (32a)

where ∆P
t is the price dispersion term induced by the Calvo pricing scheme.

Aggregate expenditures in R&D and educations are given by:

IHt = ZH
t (1 + SH (·)) +Hu

t S
H
t and IAt = η

(
ZA
t + Aut S

A
t

)
.

The equilibrium on the intermediate market is given by the demand function:

Yt = Aϑ−1
t εAt ((1− et)Hω

t Lit)
α (utKt−1)1−α

where Kt−1 =
∫ At

0
Kit−1di and Lt =

∫ At
0
Litdi. Here, Yt is interpreted as an average
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firm given by Yt = Xt/At.

2.7 BALANCED GROWTH PATH

Empirically, the growth of education and R&D expenditures have both been secularly

increasing twice faster than output. To capture this upward trend in the expenditure

side of the GDP without structurally modifying key supply side ratios in output, we

introduce a common investment-specific trend, denoted, Υt, which grows at a fixed

gross rate γ̄X = Υt/Υt−1. These investment goods IHt and IAt are produced from final

goods by means of a linear technology whereby 1/Υt units of final goods yield one

unit of investment goods. The slope of this investment-specific trend crucially appears

in the measurement equation of the model and is estimated in the fit exercise.

This economy features three sources of permanent growth: two are endogenous

(At and Ht) and one is exogenous Υt. As a result, a number of variables, such as

output, are not stationary. We therefore perform a change of variable in order to

obtain a set of equilibrium conditions that involves only stationary variables. Along

the balanced growth path, per capita output {Yt}, per capita expenditure categories

{ZH
t ,ZA

t ,AUt X
A
t ,It,Ct} and per capita capital stocks {Kt−1}, per capita income cate-

gories {Wt} and government expenditures and lump sump transfers {Tt} grow at the

same rate. This growth rate is equal to:

γt = Γt/Γt−1 with Γt =
[
Aϑ−1
t Hµα

t

]1/α
. (33)

The growth rate given in Equation 33 depends on technology parameters µ, α and γ;

competition parameter in intermediate markets ϑ; and stocks of adopted technologies

At and skills Ht. These stocks grow both at rates gH,t = Ht/Ht−1 and gA,t = At/At−1.

3 ESTIMATION

3.1 SOLUTION METHOD

To take into account the zero lower bound constraint on the nominal rate, we em-

ploy the solution method developed by Guerrieri and Iacoviello (2015). It applies

a first order perturbation approach in a piecewise fashion in order to handle occa-

sionally binding constraints. In this model, the presence of the ZLB is treated as a

second regime that occasionally binds when the state variable in Equation 30 is below

zero, otherwise the constraint is slack. The piecewise linear solution method maps

these two different regimes in the same model by using first order approximation of
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each regime around the same steady state. The solution of the model is non-linear

as decision rules parameters depend on the value of the nominal rate. Unlike global

methods, this piecewise solution is fast enough to allow the estimation with full infor-

mation methods of models with many state variables.

Because the solution is state-dependent, the Kalman filter cannot be employed to

compute the smoothed sequence of shocks. We follow the estimation method of Guer-

rieri and Iacoviello (2017) by replacing the Kalman filter by an inversion filter in order

to construct the log-likelihood function. Pionneered by Kollmann (2013), this filter ex-

tracts the sequence of innovations recursively by inverting the observation equation.

One of the drawbacks of this approach lies in the number of shocks that has to be

exactly the same as the number of innovations to allow the recursive inversion of the

observation equation.6 Given this limitation, the model is estimated on 8 observable

macroeconomic time series and are jointly replicated by the model through the joint

realization of 8 corresponding innovations.

3.2 DATA

The model is estimated with Bayesian methods on US quarterly data over the sample

time period 1950Q1 to 2018Q4 and are all taken from FRED. Our sample spans an

extended period of time to capture US growth patterns.

Concerning the transformation of series, the point is to map non-stationary data to

a stationary model (namely, the GDP, consumption, investment, R&D and educations

expenditures). Following Smets and Wouters (2007), data which exhibit a trend or

unit root are made stationary in two steps. First, we divide the sample by the working

age population. Second, data are taken in logs and we use a first difference filtering to

obtain growth rates. Real variables are deflated by GDP deflator price index. Follow-

ing ?, who underline the limited coverage of the nonfarm business sector compared to

GDP, we multiply the index of average hours for the nonfarm business sector (all per-

sons) by civilian employment. The inflation rate is computed from the log variations

of the GDP deflator, while the nominal rate is measured by the effective fund rate.

The latter is divided by 4 to be in a quarterly basis. Interest rate data prior 1955 are

taken from Olson and Enders (2012). The effective FF rate is not the central bank tar-

get, but an average interest rate charged by depository institutions on money market.

6Another drawback concerns the accuracy of this solution method, in particular to capture the
precautionary effect that emerges when the ZLB is expected to bind. Atkinson et al. (2019) compare
the estimation accuracy of the Occbin solution method with the inversion filter versus a fully non-linear
model with a particle filter. They naturally find that the non-linear model is more accurate, but the
overall gain does not compensate the computational burden induced by the solution method and the
filter. Given the large number of state variables and observables, the Occbin solution with inversion
provides enough tractability to deal with the ZLB.
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The use of this series with no prior transformation rules out the ZLB, as the FF rate

never exactly reached zero but remained slightly above. In addition, the piece-wise

solution method does not capture the precautionary effects, so the likelihood that the

ZLB binds in the future would have no effects on consumption. To portray more ac-

curately the ZLB, we set the nominal rate data to zero when the lower limit of the

federal funds target established by the Federal Open Market Committee reached zero.

To measure the empirical contribution of endogenous growth, we use a cost-based

approach by including two new time series with respect to the benchmark model of

Smets and Wouters (2007). First, R&D expenditures are observable which allows to

characterize the unobserved growth of technology. We use the nonresidential gross

fixed private domestic investment in intellectual property products. Second, we mea-

sure investment in education through personal consumption expenditures in educa-

tion services. However this series is in an annual basis, so we apply the temporal

disaggregation method of Fernandez (1981). This method makes the use of the in-

formation obtained from related indicators observed at the desired higher frequency.

We use health expenditure as the latter is the most correlated time series with educa-

tion expenditures among all sub-elements constituting personal consumption expen-

ditures. Finally, these two new time series are transformed using the same scheme as

output.

Measurement equations are given by:

Output Growth

Hours

Consumption Growth

Investment Growth

Inflation

Interest Rate

R&D Investment

Education Expenditures


=



100× log γ̄

0

100× log γ̄

100× log γ̄

100× log π̄

100× log r̄

100× log (γ̄.γ̄X)

100× log (γ̄.γ̄X)


+



γ̂t

0

γ̂t

γ̂t

0

0

γ̂t

γ̂t


+



∆ŷt

l̂t

∆ĉt

∆ı̂t

π̂t

r̂t

∆ı̂At

∆ı̂Ht


, (34)

where the hat over the variables’ names denotes the percentage deviations of these

variables from their steady state, while those with a bar denotes the steady state. A

striking feature of this model with respect to other estimated macroeconomic models

is the existence of a common endogenous trend. We note that ∆ŷt, ∆ĉt, ∆ı̂t, ∆ı̂At and

∆ı̂Ht are cointegrated with γ̂t, thus the endogenous determination of γ̂t is key as it

jointly affects most of observed variables.
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3.3 CALIBRATION AND PRIOR DISTRIBUTIONS

Calibrated parameters are reported in Table 1. As Christiano et al. (2014), the dis-

count factor is set as to 0.9989, the depreciation rate of physical capital is 2.5% and

the government spending to GDP ratio is 20%. As in most real business cycles mod-

els, steady state working hours are given a value of 1/3. Given the high value of the

discount factor, we impose α = 0.8 for the labor intensity parameter in the production

function to obtain an investment to GDP ratio close to 20%. Substitution on final

goods market is set to 10 as in Smets and Wouters (2007) thus implying a 11% per-

cent steady state markup. For intermediate goods, the elasticity of substitution is set

to 3.85 as Anzoategui et al. (2016) to be in line with the estimate of Broda and Wein-

stein (2006). Steady state adoption rate for technology is set to 0.2/4 as Anzoategui

et al. (2016) to get an average time lag to adopt of five years. The calibration of hu-

man capital adoption rate is more problematic as human capital is an unobservable

variable. We impose an adoption rate of 0.33/4 in order to mimic the graduation of a

bachelor degree in 3 years. Regarding the elasticity of patents creation to R&D expen-

ditures, we follow the calibration strategy of Comin and Gertler (2006) by borrowing

the lower bound interval value estimated by Griliches (1990). R&D expenditures in

GDP are set to 1.31% to match postwar US data. Finally, regarding the skill premium

ω, Alon et al. (2018) finds that this parameter lies at 95% in the interval [1;2] for the

US economy. Consistently with this estimate, we assign a value of 1.15 to match the

education spending to GDP over the same sample period.

Table 2 and 3 report prior distributions of shock and structural parameters, re-

spectively. Common parameters with Smets and Wouters (2007) are given prior dis-

tributions similar or close to this benchmark paper. Regarding the adoption elasticity

to final goods inputs, papers featuring an endogenous technology such as Comin and

Gertler (2006) typically calibrate this parameter to 0.95. To get an estimated param-

eter in the same range, we impose a beta distribution with prior mean of 0.8 and

standard deviation of 0.05. We impose the same prior distribution for human capital.

For congestion costs on adopting new technologies, Moran and Queralto (2017) argue

that adjustment cost of R&D are higher than those of investment, unlike these authors

we do not make any strong prior assumption on this cost by setting the same prior

information as investment adjustment costs. This prior is not informative and will let

the data be informative about their posterior values. For the percentage growth rate

of human capital γ̄H , Lucas Jr (1988) calibrates this parameter to 0.014 using the

estimation of Denison Edward (1962). This would correspond to a 0.35% quarterly

growth rate that would abnormally drive all the contribution to the growth in the
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model.7 We thus impose on γ̄H a gamma distribution with mean of 0.2 and standard

deviation of 0.15: this prior is diffuse enough to allow the data to decide whether

one engine drives all the observed growth of output. The remaining set of parame-

ters are which are not estimated nor calibrated are determined endogenously in the

deterministic steady state of the model.

3.4 POSTERIOR DISTRIBUTIONS

In addition to priors distributions, Table 2, 3 and Figure 10 also report posterior dis-

tributions drawn from four parallel chains of 100,000 iterations of the Metropolis-

Hasting algorithm, with an acceptance ratio close to 25%. To contrast the result with

the fixed trend assumption of Smets and Wouters (2007), an alternative version of the

model was estimated with the same prior distribution but with a fixed trend. Two time

series and shocks related to the two engines of growth are thus discarded from the

estimation, while the ZLB is preserved. This difference in the number of observable

time series between the two models does not allow us to compare likelihood ratios.

Figure 10 shows that data were all informative as the posterior distribution of each

parameter is fairly different its posterior distribution.

Regarding the model with endogenous trends, standard parameters from the workhorse

New Keynesian model are rather consistent with previous findings such as Christiano

et al. (2005) and Smets and Wouters (2007).

Regarding parameters specific to the two endogenous growth engines, I find that

shocks which are the most persistent are those related to the accumulation of tech-

nologies and knowledge, these shocks are probably the main source of persistence in

the model with endogenous trends, and generate desired low frequency variations for

the endogenous trend.

For parameters related to technology, the obsolescence rate of technology is 0.75%

in a quarterly basis, which is consistent with the 3% annual obsolescence rate of

Comin and Gertler (2006). In the same vein, the adoption rate elasticity is strikingly

the close to the one of Comin and Gertler (2006). Regarding the sluggishness of

the adoption rate, the cost parameter is much higher than for investment goods as

suggested by Moran and Queralto (2017).

Next we turn to the parameter related to the accumulation of knowledge. First, we

find a quarterly obsolescence rate of knowledge of 0.4% that lies in the ballpark of the

1.5% annual rate of Jones et al. (1993), while the technology of skill creation is more

intensive in goods compared to the same benchmark paper. In addition, the external

7This result is not surprising as Lucas’ model only include one source of growth.
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Figure 1: Propagation of an unit productivity shock in the endogenous and exogenous
trends models.

Notes: Variables with a trend are detrended using a linear trend. Both models are calibrated using the posterior mean of the
endogenous trends model.

effect of knowledge is twice lower than the one computed by Lucas Jr (1988).

Finally by comparing the models with endogenous versus exogenous growths, we

find that low frequency fluctuations are not correctly accounted by the exogenous

growth model, and are thus captured by more persistence in the shocks processes.

4 MACROECONOMIC IMPLICATIONS OF ENDOGENOUS TRENDS

4.1 INSPECTING THE PROPAGATION MECHANISM

To understand how the two endogenous trends affect the propagation mechanism,

we contrast the impulse response functions of our model with those obtained with the

exogenous trend model. We use the same calibration for the two models based on the

posterior mean of the endogenous growth model. We thus examine the propagation

following a standard productivity shock and a cost-push shock. We consider a cost-

push shock, given his importance in shaping the monetary policy trade-off.
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4.1.1 A productivity shock

Figure ?? reports the impulse response functions of the model following a standard

productivity shock in the production function of firms. In the short term, the IRFs

between the two models are remarkably the same: the rise in productivity makes

both labor and physical capital more productive, leading to a decline of the inflation

rate combined with a rise in the rate of growth of output. As in the workhorse New

Keynesian model, monetary reacts to the decline in inflation by lowering the nominal

rate. The decline in the real rate lowers the incentive to save for households, and thus

rises in turn consumption expenditures. In the meantime, the cost of physical is lower

and allows intermediate firms to investment more.

However after about 10 periods, the IRFs between the two models seriously di-

verge. This divergence originates from the higher persistence featured by the endoge-

nous trends. The rise in productivity increases the marginal product of human capital,

and in turn enhances the value of unadopted skills. Firms thus engage their employees

into vocational training which rises the share of the labor force into education. Accu-

mulating one effective unit of human capital takes on average 3 years which makes

the adoption of a new skill very sticky. The resulting consequence of this persistence

mechanism lies in the fact that education efforts takes time to translate into effec-

tive units of human capital. The trend of adopted skills gradually rises which drives

the endogenous persistence of output, consumption and investment above their linear

trends for an extended period of time.

For the growth of technology engine, the propagation of a TFP shock features simi-

lar dynamics with respect to the knowledge engine of growth. Following a TFP shock,

firms are more profitable as they produce more with less inputs. Higher profits in-

creases the monopoly rent for innovators which through a Schumpterian effect drives

upward the shadow value of adopted technologies. Innovators have more incentive to

innovate and adopt new technologies to monopolize the rent, in turn they rise their

R&D spending which enhances the demand for final goods. As for human capital, this

engine of growth features important delays in the propagation of a TFP shock. The

trend of technologies thus requires up to 60 quarters to peak drives output growth.

4.1.2 A cost push shock

Figure ?? reports the response following a cost push shock to the marginal cost of pro-

duction of intermediate firms. This shock typically increases inflation and reduces real

production, which creates a trade-off for monetary policy between output and prices

stabilization. As in the standard New Keynesian model with exogenous growth, a cost

20



push shocks reduces output, consumption and investment, while monetary policy rise

the interest rates to dampen inflationary pressures in the economy.

However, the presence of endogenous trends affects the persistence of the cost

push shock. This shock deteriorates the monopoly rent of intermediate firms, inno-

vators thus have in turn less incentive to engage into R&D spending as prospects of

future profits sinks. Innovators thus reduce their R&D spending, which in turn ex-

hacerbates the recession under endogenous growth. The production of new patent

and the adoption rate of technologies both declines, as a consequence the endoge-

nous trend of technology is below its linear trend level for an extended period of

time. As output, consumption and investment are co-integrated with the endogenous

trend.

In contrast, the endogenous trend of knowledge features a different dynamic with

respect to the technology trend. The cost push shock deteriorates the marginal prod-

uct of labor, the opportunity cost of being in education (rather than employment) de-

clines sharply. As a result, during a recession firms cope with the crisis by increasing

their efforts in education as its opportunity cost is lower.8 However, these education

efforts don’t materialize immediately into adopted units of human capital, as higher

inflation increases the adoption costs. The decline in the adoption rate of skills dom-

inates the positive effect of more education effort. However after 15 periods, the

accumulation of new skills are finally adopted which drives the human capital above

its linear trend.

4.2 BUSINESS AND MEDIUM CYCLE MOMENTS ANALYSIS

In this subsection, we inspect how the model with endogenous trend model is able to

capture salient features of the data at a business and medium term frequencies. Ta-

ble ?? presents the set of statistics of observable variables common to the endogenous

and exogenous trends models..

Regarding standard deviations, the endogenous trends model clearly does a better

job at a business and medium term cycles frequencies. In contrast, when the endoge-

nous trends model overshoots the volatility of some variables, the exogenous trends

model does even worse.

For auto-correlations, the standard model does a slightly better job than the en-

dogenous trends model at a business cycle frequency. Auto-correlations at a medium

frequency are rather uninformative as the correlation coefficients are closed to one at

8This result is not new in the literature. Opportunity cost models of growth have argued that
recessions are times when firms engage in productivity-improving activities because of intertemporal
substitution. See Saint-Paul (1993) for an empirical evaluation of these models.
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Figure 2: Propagation of an unit cost-push shock in the endogenous and exogenous
trends models.

Notes: Variables with a trend are detrended using a linear trend. Both models are calibrated using the posterior mean of the
endogenous trends model.

a low frequency.

5 WHY ECONOMIC GROWTH HAS DECLINED SINCE WWII?

5.1 THE ROLE OF ENDOGENOUS TRENDS

Figure 3 reports the time-path of this medium term component measured by the es-

timated model. Recall that this component jointly rise growth rates of key macroeco-

nomic aggregates such as consumption, investment and GDP. Over the postwar, the

US economy has experienced sizable medium frequency oscillations. From 1950 up

to 1970, the endogenous trend has been continually increasing upward despite small

recessionary episodes. This period is characterized by a persistent increase in R&D ex-

penditures, thus leading the trend to peak up to 3% at the end of the 60s. In decades

following the 70s, the trend growth rate have been declining synchronously with the

different recessions hitting the US economy. Recessions induced by oil price shocks in

the 70s and the Great Recession clearly damaged the engine of growth. If at first sight

the trend to be volatile, Figure 3.b shows that these fluctuations are less volatile com-
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Figure 3: Historical path of the endogenous trend between 1950q1 to 2018q4.
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Figure 4: Historical path of the endogenous trend between 1950q1 to 2018q4.

pared to the annual fluctuations of real output. Thus the endogenous trend clearly

replicates a fraction of the low frequency volatility in macroeconomic time series.

Antolin-Diaz et al. (2017) employs a dynamic factor model to track changes in the

long run growth rate of GDP, by separating them from their cyclical counterpart. Their

sample span a period as long as the one used in the fit exercise and thus allows us

to examine any similarity between their estimates of the long run growth with the

endogenous trend. Both models seems to generate close estimates of the long run

growth, which confirms that the endogenous growth model is able to successfully

capture low frequency variations.

Why has the trend reduced over time? Unlike Anzoategui et al. (2016) who con-
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sider only one source of growth, the present framework allows to disentangle con-

tributions induced by the growth of knowledge (human capital) from those induced

by the growth of ideas (technology). Figure 4 reports on the left the common en-

dogenous trend of the economy γt, that is a non-linear function of γAt and γHt (see

Equation 33). Over the sample period, it’s striking to notice that the growth of skills

has been remarkably stable over time while the main source of variations of the en-

dogenous trend since 1950 has been the growth of technology. From 1950, the growth

rate of technology peaked up to 4.5% but started to decline prior to the two coming

recessions induced by rising oil prices.

We next explore the relative importance of the two sources of growth on the

common trend. Equation 33.b reports the percentage contribution of each source of

growth using a linear approximation of Equation 33. This figure confirms that the

R&D engine accounts for much of the cyclical variation in the endogenous trend, as it

has contributed on average up to 60% of the variation of the trend. The downward

pressure on the trend has clearly been driven by variations in technology since 1970.

While before the financial crisis, the growth of knowledge was driving up the trend,

the financial crisis worryingly reversed the contribution of human capital.

How does the model account for the decline in the growth rate of technology?

Figure 5 plots the detrended evolution of main state variables determining the aggre-

gate evolution of technology. During the first twenty years of the sample, the growth

of R&D investment has been high enough (figure b) to fuel an high rate of entry of

new patents (figure e), the latter were mostly effectively adopted and thus converted

into new intermediate goods (figure a). In the meantime, the monopoly was declining

but did not translated into lower expected technology value (figure f) as expectations

about future monopoly rents were high. However the 70s recessions irrevocably dam-

aged the main engine of growth and announce the beginning of a slowdown.

For the post 70s period, (Gordon, 2012, 2017) argues that technological advance-

ment has been slowing and translates into slower growth over time. The model tends

provides a theoretical formulation of Gordon’s narrative that explains this reduction in

the rate of growth of the US economy. The model captures this decline in the growth

rate by a reduction in the entry rate of new patents, that measures the productivity

of innovators during 1950. This result is corroborated by the estimated model of An-

zoategui et al. (2016) that finds a similar path for the R&D productivity. Recessions in

the 70s reduced the monopoly rents (figure c), and thus reduced the value of adopted

technologies (figure f). Thus, the incentive for the innovator to adopt a technology

became low (figure a). This reduction in the adoption rate of technology rose the

stock of unadopted technologies until 1985. After this date, the stock of unadopted

technologies has been critically falling, mainly because the creation rate of new patent

24



1950 1960 1970 1980 1990 2000 2010
0%

2%

4%

6%

a. adoption rate

1950 1960 1970 1980 1990 2000 2010
0%

2%

4%

6%
b. R&D investment to GDP

1950 1960 1970 1980 1990 2000 2010

1.8%

2%

2.2%

2.4%

c. monopoly profits to GDP

1950 1960 1970 1980 1990 2000 2010
0%

0.1%

0.2%

0.3%

d. unadopted technologies

1950 1960 1970 1980 1990 2000 2010
0%

2%

4%

6%

8%

e. Entry rate of new patents

1950 1960 1970 1980 1990 2000 2010
12

14

16

f. Technology value

Notes: The shaded areas represent the recessions as dated by the NBER. These figures are generated by feeding the smoothed
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Figure 5: Historical path of the endogenous trend between 1950q1 to 2018q4.

and the R&D expenditures were declining. Despite an improvement of the situation

in the 2000s, the financial crisis broken this recovery in the engine of growth through

a large contraction of the monopoly rent.

5.2 THE ROLE OF LABOR PRODUCTIVITY

The model is able to disantangle the driving forces of productivity growth. Growth ac-

counting provides further perspective on the forces driving labor productivity growth

over the sample period. The expression of labor productivity growth, defined as growth

in real output per hour, is directly obtained by dividing the production function by

hours worked:

Yt
Lt

=
[
A

(ϑ−1)
t Hµ

t

]1/α

︸ ︷︷ ︸
endogenous TFP

× εZt︸︷︷︸
Exogenous TFP

× (1− et)α (ut)
1−α︸ ︷︷ ︸×

inputs utilization

(
K̂t−1/Lt

)1−α

︸ ︷︷ ︸
capital deepening

. (35)

Our model offers four different sources of productivity growth. In a similar growth

accounting exercise as Fernald (2015), labor productivity is explained by TFP, vari-

able inputs utilization and capital deepening. A few differences with Fernald (2015)

are worth to be discussed. First, Fernald interprets inputs utilization as variations in

capital’s workweek and labor effort. In our model there is no labor effort but edu-

cation effort et, the latter behaves very similarly through its countercylical aspects:

in a recession firms increase their education efforts as the opportunity cost of being

in vocational training rather than working reduces. As a result, our measure of in-

puts utilization includes both education efforts and capital utilization rate. Secondly,

unlike Fernald who considers TFP as a Solow residual from a growth accounting ex-
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Figure 6: Growth accounting of US labor productivity (y-o-y basis) between 1951Q3
to 2019Q3.

ercise, our model provides three different sources of TFP growth. TFP is determined

by the standard TFP shock from the real business cycle theory, denoted εZt , and by

two endogenous sources based on the accumulation of ideas At and knowledge Ht.

Our approach slightly differs from Anzoategui et al. (2019) as our measure of TFP

includes the role of human capital. Human capital is likely to be important, and can

be interpreted as the labor quality of Fernald’s growth accounting.

Differentiating logarithmically (where hats are log-changes) yields the expression

of labor productivity growth:

ŷt − l̂t =
(ϑ− 1)

α
ât +

µ

α
ĥt + ε̂At + Ût + (1− α) kdt−1. (36)

Figure 6 reports the contribution of ideas, knowledge, exogenous TFP, inputs uti-

lization and capital deepening on the annual labor productivity growth of the US

economy. Strikingly, the endogenous components of TFP plays a non-trivial role on

the observed fluctuations of productivity. Labor productivity has been largely fuelled

by the accumulation of technologies and knowledge during the 60s. At their peak

in 1970, endogenous trends increased by 1.5% of the growth of labor productivity.

However, oil price shocks in the 70s reduced the role of endogenous trends in driving

labor productivity. During the Great Moderation period, the role of endogenous trends

was modest. In the 2000s, the contribution has become strongly negative, thus cor-

roborating the findings of Anzoategui et al. (2019) who found that technical change

accounted for an important slowdown of the labor productivity. In our setup, this

slowdown is explained by both the decline in the accumulation of ideas and knowl-

edge. Regarding the financial crisis, we find that the decline in productivity is fueled
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by the drop in capital intensity as underlined by Hall (2015) and Anzoategui et al.

(2019).

6 QUANTIFYING THE EFFECT OF THE ZERO LOWER BOUND

compare results with Gust et al. (2017)

compute the difference between pice-wise and observed time series with uncer-

tainty on MH

compare with model with exogenous trend

We now explore how important was the presence of the zero lower bound on

the economic contraction of the US economy during the Great Recession. Figure 7

compares the observed data against the outcome from the same model without the

constraint on the nominal rate.

When the ZLB started to bind in 2009, monetary policy could not accommodate

further the nominal rate to dampen the recession. As a consequence, real interest

rates were abnormally high i which, through the Euler equation, artificially increased

both the marginal utility of consumption and the cost of capital renting, and in turn

it weakened aggregate demand. Our results show that without the ZLB the annual

growth rate of output would have been 1.5% higher in 2009. In addition, the ZLB has

amplified the deflation mechanism, this translates into year-on-year inflation differ-

ential in 2009 of 1%, and 0.3% in 2014 and 2016.

Using the estimated model, we can also gauge the effect of the zero lower bound

on the two engines of growth in the economy. Figure 7 provides the annualized growth

rate of the medium term component in Equation 33. This component is itself a com-

bination of adopted technologies and adopted skills depicted in subfigures e and d.

According to the model, the role of the ZLB on growth is trivial as the trend decline

was quick and negligible: the trend reduced of 0.1 pp in 2009 before recovering

quickly with no persistent effect. The main contributor to this modest drop is the

accumulation process of human capital that is temporary damaged by the high rates.

A natural question at hand is to the possible causal relation between the slowdown

in economic growth and the zero lower bound. As Orphanides (2003) emphasized,

real-time misperceptions about the long-run growth of the economy can play a large

role in monetary policy mistakes. In the standard workhorse New Keynesian, mone-

tary policy stabilizes short run fluctuations of output and inflation without having any

concerns about possible long-term changes in the growth patterns of the economy.

Here, we perform a counterfactual exercise to examine whether the monetary policy
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Notes: The shaded areas represent the recessions as dated by the NBER. The simulation shows the filtered series for 6 variables
from the estimated model. The dashed line show their paths feeding in the same shocks but in absence of the zero lower bound
on the nominal rate.

Figure 7: Macroeconomic implications of the zero lower bound during the Great Re-
cession.

reaction to long term growth strongly has lead the nominal rate to reach the zero

lower bound. Figure 8 reports a counterfactual interest rate that does not respond to

the endogenous trend. When monetary policy does not respond to long term change

in the growth rate, the nominal rate is higher. An higher interest rate induces a re-

duction of inflation and actually increases the zero lower bound probability. Thus the

macroeconomic situation is worse when monetary policy does not respond to long

term growth as a ZLB binds for more quarters.

7 FORECASTING PERFORMANCE

DSGE models has been criticized for not being able to anticipate the slow growth

in output after the financial crisis. In this section, we investigate whether our model

with endogenous growth is the missing ingredient of current state-of-art forecasting

models. We compute out-of-sample forecasts between 2003Q1 up to 2018Q2 based

on model parameters estimated only on revised data available at the date of the fore-

cast. We assess the accuracy of each forecast through the root the mean square errors
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distribution.

Figure 8: Counterfactual path in a model with no reaction to the endogenous trend

(RMSE). Figure 9 display RMSE at forecast horizon lying between 1 up to 12 quarters.

We compare the RMSEs of our baseline model with those implied by the exogenous

trend model as well as RMSEs implied by a Bayesian Vector Autoregression.9 Fore-

casts of the BVAR are based on the posterior means of the parameters updated each

quarter while those of the DSGE are based on the posterior modes. The grey area is

uncertainty on the RMSE of the BVAR. As Christiano et al. (2014), this uncertainty is

constructed so that if the RMSE of our baseline model lies in the grey area for a par-

ticular variable and forecast horizon, then the classical null hypothesis that the two

RMSE are actually the same fails to be rejected at the 90 percent level.

With the exception of inflation and the nominal rate, we find that the DSGE models

are performing better than the BVAR model. This corroborates the findings of Smets

and Wouters (2007) that theoretical models are serious alternatives to atheoretical

models for forecasting exercises. Strikingly, our model compares very well against

the two alternatives. Except for inflation, RMSE of the endogenous trends model is

statistically different than the BVAR model. This shows that the endogenous growth

mechanism is able to improve the forecasting performance of the model, even during

the financial crisis episode.

9As Smets and Wouters (2007), our BVAR includes four lags and its parameters follow the Minnesota
priors.
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Figure 9: RMSE comparison for three forecasting models

8 CONCLUSION

We have estimated a non-linear DSGE model that originally features a time varying

trend driven by two sources of endogenous growth. We then used the model to as-

sess the slowdown of long term growth, in particular following the onset of the Great

Recession. Based on the estimated model, our key result is that we corroborate the

thesis of a strong decline in the long term trend of the US economy. Among the two

sources of growth examined in the paper, the slowdown mainly is induced by the

technology engine reflecting a decline in the productivity of creation of new technolo-

gies since 1960. This finding tends to favor the Gordon (2012) theory stating that

the US growth has strongly declined since 1970. In addition, we find that a standard

macro-model with exogenous growth erroneously captures low frequency changes in

economic growth by highly persistent macroeconomic shocks. In contrast, the model

featuring an endogenous trend successfully captures this low frequency fluctuations.
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Calibrated parameters Values

β Discount factor 0.9989
l̄ Labor supply 1/3
sA Public spending share in output 0.20
ū Capital utilization rate 1
α Labor intensity 0.80
εA Patent production function 0.60
ϑ Substitution intermediate goods 3.85

δ
(
Ū
)

Capital depreciation rate 0.025
Ū Utilization rate in steady state 1

pA
(
x̄A
)

Technology adoption rate 0.20/4
pH
(
x̄H
)

Skill adoption rate 0.33/4
ĪA/Ȳ R&D expenditures to GDP 0.0131
ω Skill premium 1.15
ε Substitution final goods 10

Table 1: Calibrated parameter values (quarterly basis)

Prior distributions
Posterior distributions mean

Mean [0.050;0.950]
Shape Mean Std. Endogenous Trend Exogenous Trend

Std. productivity 100× σZ IG2 0.1 0.5 0.702 [0.651;0.756] 0.807 [0.715;0.902]
Std. premium 100× σB IG2 0.1 0.5 0.193 [0.171;0.218] 0.242 [0.207;0.286]
Std. markup 100× σP IG2 0.1 0.5 1.807 [1.520;2.127] 4.380 [2.928;4.944]
Std. investment 100× σI IG2 0.1 0.5 1.327 [1.172;1.515] 1.194 [1.050;1.367]
Std. spending 100× σG IG2 0.1 0.5 3.033 [2.833;3.268] 3.208 [2.957;3.485]
Std. monetary policy 100× σR IG2 0.1 0.5 0.281 [0.255;0.312] 0.247 [0.226;0.274]
Std. patent 100× σA IG2 0.1 0.5 3.640 [3.051;4.862] -
Std. human capital 100× σH IG2 0.1 0.5 1.953 [1.653;2.290] -
AR(1) productivity ρZ B 0.5 0.2 0.964 [0.951;0.975] 0.977 [0.969;0.984]
AR(1) premium ρB B 0.5 0.2 0.916 [0.892;0.940] 0.926 [0.901;0.948]
AR(1) markup ρP B 0.5 0.2 0.928 [0.909;0.946] 0.978 [0.908;0.993]
AR(1) investment ρI B 0.5 0.2 0.963 [0.942;0.978] 0.945 [0.926;0.960]
AR(1) spending ρG B 0.5 0.2 0.986 [0.980;0.991] 0.987 [0.979;0.992]
AR(1) patent ρA B 0.5 0.2 0.982 [0.966;0.992] -
AR(1) human capital ρH B 0.5 0.2 0.918 [0.881;0.949] -

Marginal log-likelihood -800.2968 -176.1236

Table 2: Prior and Posterior distributions of shocks
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Prior distributions
Posterior distributions mean

Mean [0.050;0.950]
Shape Mean Std. Endogenous Trend Exogenous Trend

Consumption aversion σC G 1 0.35 0.981 [0.905;1.084] 1.425 [1.244;1.584]
Labor Disutility σL G 2 0.5 0.973 [0.709;1.247] 1.829 [1.357;2.282]
Consumption habits h B 0.5 0.2 0.074 [0.030;0.124] 0.240 [0.169;0.314]
Calvo price lotery θ B 0.5 0.1 0.663 [0.627;0.697] 0.863 [0.810;0.882]
Price indexation rate ξ B 0.5 0.2 0.041 [0.012;0.096] 0.033 [0.009;0.076]
Capital utilization elasticity ψ B 4 1 3.995 [3.245;4.815] 0.082 [0.024;0.205]
Investment cost χI N 4 1 0.928 [0.743;1.156] 1.246 [0.956;1.626]
MPR smoothing ρ B 0.75 0.1 0.822 [0.800;0.841] 0.867 [0.847;0.885]
MPR inflation φπ N 1.5 0.25 2.693 [2.529;2.863] 2.746 [2.562;2.951]
MPR output growth gap φ∆y G 0.5 0.25 0.136 [0.106;0.167] 0.146 [0.122;0.176]
Patents obsolescence rate δA × 100 G 2.5 0.4 0.876 [0.682;1.168] -
Skills obsolescence rate δH × 100 G 2.5 0.4 0.366 [0.252;0.522] -
Adoption rate elasticity κA B 0.7 0.07 0.944 [0.929;0.958] -
Adoption rate elasticity κH B 0.7 0.07 0.665 [0.630;0.703] -
Adoption congestion cost χA N 4 1.5 8.608 [6.837;10.34] -
Adoption congestion cost χH N 4 1.5 8.605 [7.085;9.794] -
Goods intensity in skills ν B 0.2 0.05 0.548 [0.429;0.616] -
Trend slope 100× log γ̄ G 0.4 0.15 0.277 [0.196;0.329] 0.474 [0.456;0.491]
Human capital trend slope 100× log γ̄H G 0.2 0.05 0.104 [0.040;0.145] -
Investment specific slope 100× log γ̄X G 0.4 0.15 0.661 [0.625;0.696] -
Nominal rate 100× log r̄ G 1 0.10 1.449 [1.393;1.524] 1.947 [1.815;1.996]

Marginal log-likelihood -800.2968 -176.1236

Table 3: Prior and Posterior distributions of structural parameters.
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Figure 10: Prior and posterior distributions of the model with endogenous growth
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High Frequency Medium Frequency
2q-32q 32q-200q

Data MX ME Data MX ME

standand deviations:
sd (log Yt) [1.32;1.64] 1.89 1.93 [3.27;4.08] 5.10 5.20
sd (logCt) [1.00;1.25] 1.24 1.41 [3.10;3.87] 3.49 3.53
sd (log It) [4.11;5.14] 6.00 7.54 [6.76;8.44] 14.83 19.52
sd (logPt) [0.70;0.87] 1.04 1.01 [6.21;7.76] 4.75 4.45
sd (logHt) [1.16;1.45] 1.67 1.50 [2.24;2.79] 3.74 3.49
sd (rt) [0.31;0.38] 0.37 0.34 [0.34;0.43] 0.51 0.43
auto-correlations:
ρ (log Yt, log Yt−1) [0.80;0.87] 0.85 0.86 [1.00;1.00] 1.00 1.00
ρ (logCt, logCt−1) [0.76;0.84] 0.73 0.73 [1.00;1.00] 1.00 1.00
ρ (log It, log It−1) [0.87;0.92] 0.90 0.92 [0.99;1.00] 1.00 0.99
ρ (logPt, logPt−1) [0.89;0.93] 0.90 0.90 [1.00;1.00] 1.00 1.00
ρ (logHt, logHt−1) [0.85;0.90] 0.81 0.81 [0.99;1.00] 1.00 1.00
ρ
(
rt, rt−1

)
[0.78;0.86] 0.79 0.78 [0.99;0.99] 0.99 0.99

correlation w/ output:
ρ (logCt, log Yt) [0.79;0.88] 0.38 0.54 [0.98;0.99] 0.54 0.60
ρ (log It, log Yt) [0.78;0.87] 0.86 0.85 [0.49;0.69] 0.90 0.90
ρ (logPt, log Yt) [-0.45;-0.17] -0.36 -0.47 [-0.78;-0.62] -0.31 -0.50
ρ (logHt, log Yt) [0.80;0.89] 0.86 0.84 [0.61;0.77] 0.84 0.84
ρ (rt, log Yt) [0.25;0.52] 0.06 0.00 [-0.33;-0.03] 0.13 0.03

Notes: Model moments are averages over 1000 simulations of a sample size corresponding to the data. For output, investment,
consumption, prices, we reverse the first difference filter and apply the bandpass filter on the transformed series.

Table 4: Second moment statistics comparison at a business and medium term cycle
frequencies for the endogenous trends (ME) and exogenous trend (MX) models.
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