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Abstract

This paper quantifies the economic implications of systematic forecast errors
made by firm managers. Using administrative survey data from Italy, we show that
managerial forecast errors on 1-year ahead sales are positively and significantly au-
tocorrelated. This persistence in forecast error is consistent with managerial under-
reaction to new information. To investigate the micro- and macro-economic effects of
this forecasting bias, we develop a dynamic equilibrium model with heterogeneous
firms and distorted expectations. We estimate the model using firm-level production
and forecast data. The model matches exactly the significant under-reaction observed
in managerial forecast data, as well as other moments related to investment and pro-
duction. Compared to an equally imperfectly informed, but rational firm, distorted
forecasts lead, in our baseline model, to an average profit loss of about 1.489 % at
the firm-level and an aggregate TFP loss of 0.328 %. We investigate how additional
distortions affect these estimates.

∗We thank seminar participants at Princeton University, UC Berkeley, Boston College, Brandeis,
Chicago, Dartmouth, MIT and SITE for their insightful comments.
†University of Chicago
‡Bank of Italy
§UC Berkeley, NBER and CEPR
¶MIT and CEPR

1

PRELIMINARY
DO NOT CIRCULATE WITHOUT PERMISSION



1 Introduction

The behavioral corporate finance literature has convincingly demonstrated the existence

of systematic biases in managerial decision-making. In a large sample of entrepreneurs,

optimism correlates with excessive short-term leverage (Landier and Thesmar, 2009).

CEO overconfidence tends to correlate with expensive acquisitions (Malmendier and

Tate, 2008) and excess investment (Malmendier and Tate, 2005), particularly in R&D

(Hirshleifer et al., 2012). A nascent, related, literature emphasizes the importance of

systematic errors in managerial forecasting. Ben-David et al. (2013) provide evidence

that CEOs have mis-calibrated expectations of returns, and that such overconfidence

correlates with investment and leverage in the cross-section of firms. Gennaioli et al.

(2016) show that managerial expectations tend to be extrapolative, and that expectations

drive investment across firms. While these papers establish a statistically significant re-

lationship between systematic forecast errors and managerial decisions, our paper asks

whether such forecasting biases matter quantitatively. Do they create significant distor-

tions in firm-level decisions? Do they contribute significantly to aggregate inefficiency?

We start by documenting systematic forecasting biases by firms’ managers. We use

an approach similar in spirit to recent contributions in the macroeconomics and finance

literature that investigate the dynamics of beliefs using survey data (see e.g. Coibion

and Gorodnichenko (2015), Bordalo et al. (2017a), Bordalo et al. (2017b), Malmendier

and Nagel (2016), Bouchaud et al. (2018), among others). More precisely, we exploit a

large representative sample of Italian firms surveyed by the bank of Italy (INVIND sur-

vey). This sample is an unbalanced panel of about 4,000 firms per year over 2002-2017.

It contains firm-level forecast on next year sales that we match with administrative data

on sales realizations. We show that managerial forecasting errors are highly persistent,

with an auto-correlation coefficient that ranges from .17 to .32. This persistence in fore-

cast errors holds even when controlling for firm fixed-effects and is stable across size

quintiles. This result is consistent with the hypothesis that firm managers under-react to
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recent news about their own firm’s output.

We then develop an economic framework to quantify the effect of forecasting biases.

We start from a standard neoclassical model of investment with heterogeneous firms.

Productivity follows an AR(1) process. Every period, managers observe the realization

of productivity and a private signal informative about next-period productivity. Firms

face a one period time-to-build for capital investment, so that managerial forecast about

future TFP determines current capital expenditures. Managers may have non-rational

expectations about next period TFP. We extend the formulation of belief formation in

Bordalo et al. (2017b) to accomodate both over- and under-reaction to news about firm’s

future TFP. We also allow managers to exhibit different biases in the way they process

public and private information. This baseline model has no additional friction beyond

the one-period time-to-build and distorted forecasts. We obtain simple closed-form so-

lutions that relate firms’ input choices and managerial forecast errors.

We estimate this baseline model by combining data on forecasts and production. On

the production side, the model’s key parameters are the persistence and productivity

of TFP shocks. Using both our U.S. and Italian data, we fit an AR(1) process on TFP

residuals. We use our forecast data to identify the distortions in beliefs and the amount

of private information held by managers – intuitively, private information is necessary

to fill the gap between large TFP shocks and relatively smaller forecast errors. We target

the persistence in forecast errors, the dispersion in forecast errors, TFP dynamics, and

the covariance between TFP innovations and forecast errors. In line with our reduced-

form evidence, we estimate significant distortions in forecasting relative to rational ex-

pectations. Managers under-react to TFP shocks (both private information and actual

surprise). We then use our model to measure the real effects of expectation distortions

on firm behavior. Given that the Italian data is more representative of the economy, and

less likely to be polluted by financial communication consideration, we use them as the

baseline. The direct effect of expectations distortions on capital investment is large. In
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our estimated model, following a 1 s.d. TFP shock, fully rational firms increase their

capital stock by 18 ppt more than distorted firms. Across all possible shocks, average

corporate profit would be only 1.8% larger (with a s.e. of .12%) in a counterfactual where

managers hold rational expectations. This sizable effect on profits happens even though

our model has no friction – except for the time to build in capital. So the envelope the-

orem applies, making effects on profits an order of magnitude smaller than effects on

investment.

We then experiment with additional (real) frictions that may affect our results: capital

adjustments, long-term time-to-build and labor frictions. We find that quadratic adjust-

ment costs tend to make effects smaller, as they make firms react less to forecasting

errors. Longer-term time to build also reduces the effect of expectations, as forecasters

in our model make relatively fewer systematic errors in the long-run (there is no bias in

the very very long-run). Finally, we account for labor frictions by assuming time-to-build

in labor, so that firm capital and labor decisions both depend on productivity forecasts.

This increases the scope for forecasting mistakes, as distorted forecasters cannot make

up for investment errors by adjusting employment ex-post. So in our exploration, capital

frictions tend to make our results weaker, while labor frictions make them larger.

We finally consider how distorted beliefs affect macroeconomic outcomes. We show

that aggregate efficiency (aggregate TFP) is proportional to the dispersion in log-sales

forecast errors, a result reminiscent of Hsieh and Klenow (2009) and David et al. (2016).

Intuitively, dispersion in forecast errors implies capital misallocation: firms with posi-

tive (resp. negative) TFP shocks relative to expectations end up with too little (resp. too

much) capital ex post. Quantitatively, aggregate TFP losses from distorted beliefs are

proportional to the difference between the dispersion in log-sales forecast errors in the

data and the dispersion in log-sales forecast errors under fully rational expectations. We

use our estimated structural model of forecasting biases to compute the dispersion in

log-sales forecast errors under fully rational expectations. We estimate aggregate TFP
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losses from distorted beliefs to be about .36%. This is a sizable effect. For instance,

Baqaee and Farhi (2017) estimate that removing all heterogeneous mark-ups would in-

crease U.S. TFP by about .76%. Catherine et al. (2017) estimate that removing all financ-

ing constraints would raise U.S. TFP by 2%. Our exercise is less extreme in the sense

that our benchmark is more “policy-relevant” since it allows for rational errors. In other

words, it would not be possible to remove all financing constraints in the real world,

while it would presumably be more possible to teach managers to form undistorted

forecasts.

Our paper builds on a recent literature that uses forecast data to test rationality.

Coibion and Gorodnichenko (2015) document that past revisions positively predict fore-

cast errors in macroeconomic forecasts. They argue that this predictability arises from

informational frictions. Bouchaud et al. (2018) document under-reaction among secu-

rity analysts. Also looking at analysts, Bordalo et al. (2017b) show that forecast errors

on long-term EPS growth forecasts are positively correlated with past growth, suggest-

ing over-reaction. Bordalo et al. (2018) document over-reaction in macro and financial

variables among professional forecasters. Bloom et al. (2017) show that 15% of plant

managers cannot form and express subjective probability distributions. Using data on

household expectations of inflation, Malmendier and Nagel (2016) find evidence con-

sistent with “experience effects”: heavy discounting of pre-birth data combined with

recency bias. We contribute to this literature by documenting significant under-reaction

to new information in guidance data. More importantly, our paper provides a tractable

framework to quantify the economic effects of this forecasting bias. We incorporate non-

rational forecasts into an otherwise standard neo-classical model of investment with

heterogeneous firms.

Through its aggregation approach, our paper is also related to a small number of

papers that investigate the impact of managerial information on long-term output in

steady state models. On the theory side, Akerlov and Yellen (1985) show that, in most
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equilibrium settings, near-rational behavior can have first-order aggregate consequences,

even when it has second-order individual effects. Hassan and Mertens (2017) builds on

Akerlov and Yellen (1985) and show that near-rational errors lead to first-order distor-

tions in household savings decisions. On the empirical side, David et al. (2016) develop

a steady-state production model similar to ours, but use it to quantify aggregate effi-

ciency improvements that results from a well-developed stock market. Our paper is

concerned with inefficiencies arising from non-rational expectations. In parallel work,

Barrero (2018) has developped an approach very similar to ours, using expectation sur-

vey data to calibrate the economic effect of managerial forecasts biases that he identifies

in the data.

The rest of the paper is organized as follow. Section 2 presents reduced-form evidence

of persistence in managerial forecast errors. Section 3 builds a production framework

with heterogeneous firms and distorted expectations, provides a structural estimation

of the model and quantify a number of partial equilibrium counterfactuals. Section 4

provides aggregation results. Section 5 concludes.

2 Evidence on Managerial Biases

2.1 Data and Summary Statistics

Sample

Our main data come from the Survey on Industrial and Service Firms (INVIND,

henceforth), which is a large annual business survey conducted by the Bank of Italy on a

representative sample of firms. Since 2002, the reference universe in INVIND consists of

firms with at least 20 employees operating in industrial sectors (manufacturing, energy,

and extractive industries) and in non-financial private services and with administrative

headquarters in Italy.1 In recent years each wave has around 4,000 firms (3,000 industrial

1For further details see the methodological note about the Survey on industrial and services firms here.
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firms and 1,000 service firms).

The data are collected by the Bank of Italy’s local branches between February and

April every year. Among other things, the survey asks firms to report their sales, invest-

ments and employment in three periods: the fiscal year just ended (preliminary results),

the previous fiscal year (final results) and the current fiscal year (forecasts). Throughout

the paper, we define empirical log-sales forecast errors as the difference between actual

sales and sales forecast:

F̂Eit = log salesit − log Ft−1salesit

where salesit is total sales of year t and Ft−1salesit is reported in February to April.

To compute the firm-specific total sales forecast error, we measure actual sales salesit

using firm balance sheet data from Company Accounts Data System (CADS), which is

managed by the Cerved Group and provides financial data for all Italian limited liability

companies. We do not use the self-reported sales data in INVIND to measure actual

sales (i.e. final result for previous fiscal year) as this information might be subject to

self-reporting biases.

The Italian survey-account sample runs from 2002 through 2017, and contains about

37,000 total firm-year observations. We keep firms that report at least 5 forecasts for total

sales. We winzorize all variables at the median +/- 5 times the interquartile range.

Summary Statistics

Table 1 provides summary statistics for the Italian sample. Panel A focuses on firms

for which forecast data are available. Panel B provides descriptive statistics for the

universe in order to make a comparison. The average firm in the forecasting sample is

larger and more profitable.

Italian managerial forecast errors have a standard deviation of 18%. Figure 1 provides

a histogram of log-sales forecast error.
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Forecast Informativeness

We verify the informativeness of managerial forecasts in our data. One possible con-

cern is that these forecasts are only weakly correlated with actual forecast, for instance

because managers put little information in answering the survey. In Table 2, we show

that forecasts are highly informative of future sales. We estimate the following regres-

sion:
salesit

assetsi,t−1
= αi + δt +

Fi,t−1salesit

assetsi,t−1
+ X

′
itγ + εit,

where Fi,t−1salesit corresponds to the forecast of firm i and fiscal year t made at the

beginning of the year. The set of control variables X includes: lagged sales, beginning-

of-year log assets, year fixed effects, industry fixed effects, industry-year fixed effects,

and firm fixed effects. Standard errors are clustered by firm and time.

Table 2 shows that the coefficient on forecast is .97 with an R2 of 90%. The various

specifications estimated in Table 2 confirm the robustness of this finding to including

additional predictors.

2.2 Expectations and Capital Investment

We now show that the sales expectations are linked to firms’ capital investment deci-

sions. Table 3 regresses log capital in fiscal year t on log sales forecasts:

log kit = αi + δt + log Fi,t−1salesit + εit,

where kit is capital (net plant, property, and equipment) in year t, Fi,t−1salesit is the

forecast of sales in year t made at the beginning of the year, αi is the firm fixed effect,

and δt is year fixed effect.

Table 3 column (1) shows a strong positive relationship. When managers are opti-

mistic, firms tend to accumulate more capital. Column (2) shows that these periods are

also associated with more positive forecast errors—managers seem to under-predict the
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good shocks.

One possible concern of the interpretation of the positive correlation between sales

expectations and capital investment is reverse causality: when firms are investing a lot,

managers expect sales to increase. Note that capital expenditures capture long-term

capital investments, which are unlikely to pay off immediately. In addition, later we will

also match this relationship in our model, where we allow sales forecasts to respond to

investment activities.

2.3 Persistence of Forecast Errors

Under rational expectations, managerial forecast errors should not be predictable using

variables in the manager’s information set. We document instead that managerial fore-

casts errors are persistent, and positively predictable by previous forecast errors. This

feature is consistent with under-reaction to new information.

We estimate the following model:

F̂Eit = α + δt + βF̂Ei,t−1 + εit, (1)

where F̂Eit is log-sales forecast error defined above and δt corresponds to year fixed-

effects. Figure 2 provides a binned scatter plot of this relationship between past log-sales

forecast errors and current log-sales forecast errors. To construct this figure, we split the

sample in vingtiles of lagged log-sales forecast error (x-axis) and represent, on the y-axis,

the average current log-sales forecast error: the relationship between lagged and current

log-sales forecast error is increasing and close to linear.

Table 4 reports the equivalent regression results. Column (1) estimates Equation 1

on the baseline sample using OLS. Standard errors are clustered at the firm and year

level. The estimated β is .32, statistically significant at the 1% level. Columns (2) and (3)

add firm fixed-effects, to allow for average over-optimism or over-pessimism of a firm.
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This augmented model cannot be estimated consistently using OLS given the short time

period in our sample (Nickell (1981)). As a result, we further restrict the sample to firms

with at least 9 forecasts and estimate the model using dynamic panel GMM (Arellano

and Bover (1995)). These augmented models lead to an estimate of .17, significant at the

1% level.

The results are consistent with the idea that managers under-react to recent news.

News are slowly incorporated in forecasts, leading to forecast error persistence. How

important are these errors? The quantitative interpretation of these persistence estimates

does require a structural model, which we describe in Section 3.

We also check whether forecast error persistence varies as a function of firm size.

One possible concern can be that stickiness is mostly a small firm phenomenon. We

split the Italian sample into 5 size groups, and re-run regression (1) for each of these

5 subgroups separately. We report results in Appendix Table B.1. Across size groups,

estimates are quantitatively consistent and strongly significant. We do not find evidence

that forecast persistent decreases with size. If anything, the opposite happens. But given

the confidence intervals, we cannot reject the null hypothesis that the autoregression

coefficient is the same across size groups.

In the rest of the paper, we investigate the quantitative consequences of such biases

for production and efficiency.

3 Partial Equilibrium Model of Investment with Distorted

Beliefs

3.1 Baseline Model

We start from a standard neoclassical model of investment with two frictions: (1) 1

period time to build, and (2) distorted beliefs.
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Economy

Time is discrete. At date t, firm i combines capital kit and labor lit to generate sales

with a Cobb-Douglas technology:

pityit = Aeνit
(

kα
itl

1−α
it

)θ
,

where νit is revenue-based log-productivity, α is the capital share, and θ captures de-

creasing returns to scale in revenues, which may arise from technology or market power.

Input markets are competitive. w is the wage on the labor market and R is the rental rate

of capital.2 At date t, firms hire lit employees after observing νit. However, we assume

a one-period time-to-build in capital: firms invest in the capital stock kit before νit is re-

alized. As a result, managers need to form expectations about next-period productivity

before investing. We assume an AR(1) process for νit:

νit = (1− ρ)Vi + ρνit−1 + ψit + ωit with: (ωit, ψit) ∼ N


0

0

 ,

σ2
ω 0

0 σ2
ψ


 , (2)

Vi is the long-run mean of firm i’s productivity; ωit is a shock realized at date t, after kit

has been purchased; in contrast, ψit is private information observed by the manager at

date t− 1, but not by the econometrician. Our model thus allows for managerial private

information about future productivity.

Accordingly, at date t, the firm chooses labor demand lit given current TFP (νit) and

installed kit, to maximize earnings:

EBITit = max
lit

{
Aeνit kαθ

it l(1−α)θ
it − wlit

}
= Ωe

Φ
αθ νit kΦ

it (3)

2We omit the time subscript for w and R, as we only consider steady-state economies.
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where Φ = αθ
1−(1−α)θ

and Ω = (1− (1− α)θ)
(
(1−α)θ

w

) 1−α
α Φ

A
Φ
αθ . Capital kit is selected at

t− 1:

max
kit

{
ΩFit−1

[
e

Φ
αθ νit
]
kΦ

it − Rikit

}
(4)

where we allow for firm-specific cost of capital Ri. Therefore,

kit =

(
ΩΦ
Ri

) 1
1−Φ (

Fit−1[e
Φ
αθ νit ]

) 1
1−Φ

Distorted Expectations

Managers may exhibit distorted expectations about future productivity. In the spirit

of Bordalo et al. (2017a), we assume managers use the following conditional productivity:

hs
t−1(νit+T) = h(νit+T|νit−1, ψit)

[
h(νit+T|νit−1, ψit)

h(νit+T|ν̂it−1 = ρνit−2 + ψit−1, ψit)

]γ
[

h(νit+T|νit−1, ψit)

h(νit+T|νit−1, ψ̂it = 0)

]λ
1
Z

(5)

where Z is a normalization coefficient and T ≥ 0 is the forecast horizon. This subjective

density allows for under- or overreaction to private information and true innovation.

The first term is the true (rational) conditional distribution. The second term is the

over/underreaction to the surprise. The “diagnostic” is large when the past realization

of productivity is high compared to expectation. Those states are overweighted when

γ > 0 (representativeness bias in Bordalo et al. (2017a)). They are underweighted when

γ < 0. This story can be rationalized as lack of attention: Large surprises are less

representative of potential realization and therefore more likely to be overlooked. The

third term follows the same logic but focuses on over/underreaction to private informa-

tion. The diagnostic ratio is high when the private information is large compared to its

expected value ψ̂ = 0.

Given the above distribution, it is straightforward (see for instance the proof in Bor-

dalo et al. (2017a)) to show that the above subjective distribution has conditional expec-
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tation:

Ft−1νit+T = E (νit+T|νit−1, ψit)

+ γ (E (νit+T|νit−1, ψit)− E (νit+T|ρνit−2 + ψit−1, ψit))

+ λ (E (νit+T|νit−1, ψit)− E (νit+T|νit−1, 0))

and has conditional variance var (νit+T|νit−1, ψit). So this formulation only introduces a

bias in expected TFP, not in the other moments.

We focus here on short horizon forecasts (we return to longer horizon forecast in

Section 3.5.3), as these are the ones we see in the data. So we set T = 0. We obtain the

following expression for the conditional subjective expected TFP:

Ft−1νit = ((1− ρ)Vi + ρνit−1 + ψit) + γρωit−1 + λψit︸ ︷︷ ︸
distorted expectations

(6)

This formulation entails two deviations from rational expectations: (1) when γ > 0

(resp. < 0), managers are over-reacting (resp. under-reacting) to the date t-1 innovation

in productivity ωit−1 (2) when λ > 0 (resp. < 0), managers are over-reacting (resp.

under-reacting) to their date t-1 private information about date-t productivity ψit. When

γ = λ > 0, our model has the same properties as Bordalo et al. (2017a): the forecaster

overweights “exceptional” past realizations when forming beliefs (i.e. date t-1 realiza-

tions that deviate from date t-2 forecasts). But our formulation extends the framework

of Bordalo et al. (2017a) in two directions: (1) We allow errors on private and public

information to differ (γ and λ may differ) and (2) the agent may underweight as well as

overweight such realizations (γ and λ may be negative).

Finally, we allow reported managerial forecasts about future sales, F̂i,t−1[pityit], to
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differ from true managerial forecasts Fi,t−1[pityit]. Specifically:

ln
(

F̂i,t−1[pityit]
)
= ln (Fi,t−1[pityit]) + ζit, where: ζit ∼ N

(
0, σ2

ζ

)
(7)

This is to account for the fact that managers may not reveal their true expectations,

because of measurement issues or internal goal-setting purposes.

We summarize firm behavior in the following proposition:

Proposition 1. Let Φ = αθ
1−(1−α)θ

. Firm i’s optimal capital stock at date t is:

kit = Ω̃1

(
Fit−1

[
e

Φ
αθ νit
]) 1

1−Φ
= Ω̃1e

1
1−Φ

(
Φ
αθ ((1−ρ)Vi+ρνit−1+γρωit−1+(1+λ)ψit)+

1
2(

Φ
αθ )

2
σ2

ω

)
,

where Ω̃1 =
(

ΩΦ
Ri

) 1
1−Φ . Firm i’s sales at date t are simply given by:

pityit = Ω̃2e
Φ
αθ νit kΦ

it

where Ω̃2 = Ω
1−(1−α)θ

. Log-sales forecast error at date t using reported forecasts at date t-1 are:

F̂Eit = ln

(
pityit

F̂i,t−1[pityit]

)
= − Φ

αθ
(γρωit−1 + λψit)︸ ︷︷ ︸
Belief distortions

+
Φ
αθ

ωit −
1
2

(
Φ
αθ

)2

σ2
ω︸ ︷︷ ︸

Rational expectation error

− ζit︸︷︷︸
Noise

(8)

Proof. See Appendix A.1.

Firm i’s investment decision at date t-1 depends on firm i’s forecast of date-t pro-

ductivity. This forecast is distorted: with γ 6= 0 and λ 6= 0, managers put non-rational

weights on date t-1 innovations in productivity (ωit−1 and ψit). These distorted forecasts

lead to predictable forecast errors that depend systematically on these past innovations.
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3.2 Model Estimation Procedure

We calibrate two parameters related to production: α = .33 and θ = .8 ((Broda and

Weinstein, 2006)). We estimate 8 parameters (ρ, σω, σψ, γ, λ, σζ , Var [Vi] , Var [Ri]). We

follow David et al. (2016) and construct revenue-based productivity for firm i at date t as:

ν̂it =
αθ
Φ (ln(pityit)−Φ ln(kit))). We use the net value of property, plant and equipment

in year t− 1 as our measure of kit
3 and pityit is firm i’s total sales for fiscal year t. We

use dynamic panel GMM to estimate the following process for ν̂it (Arellano and Bover

(1995)):

ν̂it = δi + δt + χ ˆνit−1 + τit

The estimated persistence, χ̂ is a consistent of ρ provided the production function and

demand system are true. This is a strong assumption but one we are making throughout

this paper. We estimate the remaining structural parameters through a moment estima-

tor that targets eight sample moments from both production and forecast data. Since

the model does not allow for aggregate shocks, all the moments used in the estimation

control for year fixed-effects. The moments we target are:

1. the variance of the estimated productivity innovations σ̂2
τ . In the model,

σ2
τ = σ2

ω + σ2
ψ

the variance of TFP innovation is the sum of the part that is anticipated by man-

agers (via private information) and the true surprise.

2. the variance of the firm fixed effects of TFP V̂0 = Var [Vi].

3. The variance of residuals from a regression of log-sales forecast errors on year

3In the model, kit is determined at date t − 1 but can only be used for production in period t. PPE
observed in year t − 1 include to the capital expenditures made in year t and thus corresponds to our
definition of kit in the model.
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fixed-effects (V̂ar[F̂Eit]). In the model,

V̂1 = Var[F̂Eit] = σ2
ζ +

(
Φ
αθ

)2 (
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)

The variance of forecast errors contains: forecast measurement error, the effect on

sales of the true productivity surprise, and the effect on sales of errors coming from

expectations distortions.

4. the estimated coefficient κ̂1 from a regression of log-sales forecast error on lagged

forecast error. This regression corresponds to results shown in column 1, Table 4.

As discussed in Section 2.3, a positive κ̂1 implies that managers are under-reacting

to TFP innovations (γ < 0). In the model,

κ1 = −
( Φ

αθ

)2
γρσ2

ω

Var[F̂Eit]

where it appears that the autocorrelation of forecast errors is positive only when

γ < 0, i.e. when managers underreact to past positive news. As expected, forecast

measurement error σ2
ζ makes the coefficient smaller. Note that λ, overreaction

to private information, does not affect the regression coefficient. This is because

under/overreaction to private information has no impact on error persistence.4

5. the estimated coefficient κ̂2 of a regression of date t productivity residual, τ̂it on

date-t reported log-sales forecast error, controlling for year and firm fixed-effects.

Intuitively, under-reaction to private information (i.e. λ < 0) creates a positive

correlation between what the econometrician observes as a positive innovation to

4This happens in the model because distortions have no memory in this model. Future biases only
depend on recent information, not on old one. This is admittedly a strong assumption that we may relax
in future research.
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TFP and managerial forecast error. In the model:

κ2 =

( Φ
αθ

) (
σ2

ω − λσ2
ψ

)
Var[F̂Eit]

TFP and forecast error comove less when λ is large, i.e. when managers overreact

to private information. When private information is good, TFP is high, but since

managers overreact, their forecast error is low.

6. the estimated coefficient κ̂3 of a regressionof log capital on log forecast, with firm

fixed effects:

κ̂3 = 1−
(1− 1

T )σ
2
ζ

Var
[
log
(

F̂it−1[Salesit]
)
− 1

T ∑T
τ=1 log

(
F̂iτ−1[Salesiτ]

)]
In the model, without noise, then log(kit) = log

(
αθ
Ri

)
+ log (Fi,t−1[pityit]). Noise in

forecast σ2
ζ creates a wedge in this relationship: log(kit) = log

(
αθ
Ri

)
+ log

(
F̂i,t−1[pityit]

)
−

ζit. The larger the variance of the noise σ2
ζ , the coefficient κ̂3 would be closer to zero

(analogous to the classic measurement error issue).

7. note that

V̂2 = Var

[
log
(

F̂it−1[Salesit]
)
− 1

T

T

∑
τ=1

log
(

F̂iτ−1[Salesiτ]
)]

is an empirical object: it is the variance of the log sales forecast minus its within-

firm average. We also separately measure this object.

8. the variance of within-firm average of log forecasted MRPK:

V̂3 = Var

[
1
T

T

∑
τ=1

log

(
F̂i,τ−1[piτyiτ]

kiτ

)]
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Note that the log forecasted MRPK is log
(

F̂i,t−1[pityit]
kit

)
= log

(
αθ
Ri

)
− ζit, so its

within-firm average is 1
T ∑T

τ=1 log
(

F̂i,τ−1[piτyiτ ]
kiτ

)
= log

(
αθ
Ri

)
− ζi. This helps us iden-

tify the firm-level cost of capital Ri:

Var [log Ri] = Var

[
1
T

T

∑
τ=1

log

(
F̂i,τ−1[piτyiτ]

kiτ

)]
− σ2

ζ

In the model, we do not have aggregate shocks. Correspondingly, in the data we filter

out year fixed effects from all the data and compute moments on the residualized data.

3.3 Model Estimation Results

Table 5 reports the 6 moments used in the estimation. As before, Panel A stands to Italian

results and Panel B for U.S. results. Standard errors are obtained by bootstrapping on the

estimation sample using a block bootstrap at the firm-level. The persistence of log-TFP

is estimated to be .72 in the U.S. (.79 in Italy), while the variance of log-TFP innovations

is .008 (.072 in Italy). The variance of log-sales forecast errors after projecting on year

fixed-effects is .008 (versus .031 in Italy). The two new regression coefficients, κ̂2 and κ̂3,

are both positive and significant at the 1% level in both countries.

Table 5 also reports the estimated structural parameters of our model. We estimate

γ – the parameter governing the distortion in expectations related to public information

– at -.32 in the U.S. (-.78 in Italy): In both countries, managers put negative weights on

recent innovations to the public component of TFP innovations, ωit. We also estimate λ

to be slightly negative: there is some limited over-reaction to private information, but

it does not need to be large to account for the empirical comovement between forecast

error and productivity.

Two additional interesting patterns emerge. First, the model estimates sizable fore-

cast measurement error. This is because MRPK variations can only be imperfectly at-
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tributed to changes in forecasting error. Given such a big measurement error, forecast

errors should be big, but they are small compared to TFP innovations. This can only be

reconciled with significant private information, to which managers do not overreact too

much. This leads to a large amount of private information, especially in Italy.

3.4 Partial equilibrium counterfactual

In this section, we use our structural estimates to quantitatively compare average corpo-

rate behavior for firms with rational managers relative to firms with managers that use

distorted forecasts. We do this in partial equilibrium, i.e. without clearing product and

labor markets.

Investment conditional on TFP shocks

In Figure 3, we first consider the case of investment. From Proposition 1, we find that

log investment is given by:

∆ log kit =
1

1−Φ
(ρ∆νit−1 + γρ∆ωit−1 + (1 + λ)∆ψit)

so that the regression coefficient of investment on log TFP innovation is given by:

β∆ log kit/ωit−1
=

ρ

1−Φ
(1 + γ)

which shows that investment is less sensitive to productivity shocks when the manager

underreacts (i.e. when γ < 0).

We use the estimated parameters in Table 5 to quantify this effect. In Figure 3, we

plot log investment against 20 deciles of TFP shocks for managers with rational forecasts

(dark square – γ = λ = 0) and managers with distorted forecasts (white diamonds –

γ and λ at their estimated values). We see that the conditional investment policy of a

rational manager significantly differs from that of a manager with distorted forecasts.
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For high (resp. low) realization of ωt−1, the distorted manager significantly under-invest

(resp. over-invest). In Italian data, the effect is large: for a +1 s.d. TFP shock, capital

growth is about 23% for a rational manager, compared to only 5% for an underreacting

manager. In the U.S. the difference is smaller, yet still sizable. Facing a shock of the the

same size (thus more than 1 s.d. given that U.S. are less volatile), rational U.S. firms

grow their capital stock by 21%, vs 14% if they are distorted. The effect of expectation

distortions is about 2.5 times larger in Italy (18ppt vs 7ppt) because the estimated γ

coefficient is also about 2.5 times larger there, which is itself directly coming from more

error persistence in reduced-form regressions.

Profits conditional on TFP shocks

This significant difference in investment policy leads to a difference in conditional

profits which is an order of magnitude smaller. This is the direct result of the envelope

theorem. We do not have simple closed forms for profits, but can easily simulate their

expected values, and sho them in Figure 4. Within each bucket of past TFP innovations

(ωit−1), we compute the difference between log expected profits made by distorted man-

agers and managers with distorted forecasts, conditional on TFP level νit−1. On average,

distorted managers are close to being rational for zero TFP firms – this comes from the

fact that the log forecast error is zero on average in our model. As TFP moves away from

zero, distorted managers make bigger and bigger mistakes. In Italian data, the difference

in profit appears non-trivial: for a negative shock of -.5 in log TFP (slightly more than

one s.d.), distorted managers do not scale investment down enough, and there profits are

about 3% lower. On U.S. data, the effect is here too, but much smaller. This is because,

as we have seen above, the investment distortion is smaller for U.S. firms. The envelope

theorem applies and makes profit losses an order of magnitude smaller than investment

differences.

Unconditional Profits

20



We compute here the unconditional gain from having rational expectations. For each

realization of productivity, we calculate the difference between (1) the log-profit of a

rational manager ln(π∗it) and (2) the log-profit of a manager with distorted forecasts

ln(πF
it). We then compute ∆, the average of this log-difference:5

∆ = E
[
ln(π∗it)− ln(πF

it)
]
= 1.489%

(NaN%)
on Italian data

= 0.046%
(0.013%)

on U.S. data

This calculation confirms that relative profit differences are an order of magnitude

smaller than investment differences. In U.S. data, this leads to negligible profit differ-

ence. In Italian data, the envelope theorem does not work as forecfully, as investment

differences are larger. Then, non-bayesian expectations lead to a 1.75% loss in profits.

We now explore if these profit losses translate into misallocation losses. Note that our

estimation allows us to give confidence intervals to these estimates. The Italian estimate

of profitability loss is both sizable and strongly significant.

3.5 Extensions

3.5.1 Fixed biases in beliefs

We now extend the baseline model and consider a case where managers may also have

fixed biases in their forecasts: some managers may have an optimistic bent while others

have a pessimistic bent. The expression for the conditional subjective expected TFP in

Equation 9 now becomes:

5Note that ∆ is independent of w, R and A since, in our Cobb-Douglas environments, realized profits
are log-linear in the wage w, the user cost of capital R and the average productivity A
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Ft−1νit = ((1− ρ)Vi + ρνit−1 + ψit) + πi + γρωit−1 + λψit︸ ︷︷ ︸
distorted expectations

(9)

where πi denotes the fixed bias for manager i. Correspondingly, the formulation for

investment becomes:

kit = Ω̃1

(
Fit−1

[
e

Φ
αθ νit
]) 1

1−Φ
= Ω̃1e

1
1−Φ

(
Φ
αθ ((1−ρ)Vi+πi+ρνit−1+γρωit−1+(1+λ)ψit)+

1
2(

Φ
αθ )

2
σ2

ω

)

As before, we allow firms to report noisy forecasts. In this extension, we estimate

9 parameters: 8 parameters are the same as before, plus the variance of the fixed bias

Var[πi]. Most moments are unchanged or similar to the baseline model, and we discuss

the main differences below.

First, we estimate Var[πi] using the following two regressions:

F̂Eit = c1 + κ1.F̂Eit−1 + u1
it and F̂Eit = c1 + κ̃1.F̂Eit−2 + ũ1

it

We get:

κ̂1 − ̂̃κ1 = −
( Φ

αθ

)2
γρσ2

ω

σ̂2
FE

and Var [πi] =

(
αθ

Φ

)2 ̂̃κ1 × σ̂2
FE

We do not have a closed form expression for Var[πi] from directly running the auto-

correlation regression of forecast errors with firm fixed effects. However, we can use the

information from comparing the first and second order auto-correlations: the difference

between these two regression coefficients using OLS is informative about the actual auto-

correlation, while the level of the coefficients has a part that comes from the fixed bias.

Another moment we use, the variance of sales forecast errors, also now contains

Var[πi]:

V̂1 = Var[F̂Eit] = Var[πi] + σ2
ζ +

(
Φ
αθ

)2 (
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
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Finally, for the regression of log capital on log sales forecast, which provides κ3, we

need to add firm fixed effects to absorb the fixed bias in sales forecast.

Other moments are unchanged. Persistence of TFP (χ̂), variance of TFP innovations

(σ̂2
τ), and variance of fixed-effects in TFP V̂0 = Var [Vi] are unchanged because they

come from the features of the TFP process, which are the same as before. The regression

coefficient of TFP innovations on forecast errors, κ̂2, is unchanged because π is orthogo-

nal to ψit and ωit. V̂2 and V̂3 are unchanged because the fixed bias in forecasts is already

effectively differenced out.

3.5.2 Adjustment costs

We now assume that firms face a fixed cost of adjusting their capital stock, as well as

quadratic adjustment costs. With our formulation of distorted expectations, we can write

the Bellman representation of the firm dynamic optimization problem:

V(kit, νit, νit−1, ψit) =

∣∣∣∣∣∣∣∣∣
∫

ψ̃
max
(kit+1)

{(
π (νit, kit, kit+1) +

1
1 + r

∫
ω̃

V(kit+1, ρ(νit + γ(νit − ψit − ρνit−1)) + (1 + λ)ψ̃ + ω̃, νit, ψ̃)G(ω̃)dω̃

)
G(ψ̃)dψ̃

}

π(k, k′, ν) = Ωe
Φ
αθ νkΦ − (k′ − (1− δ)k)− ck

(k′ − (1− δ)k)2

k
− fk1k′ 6=(1−δ)k

,

(10)

where ck parameterizes quadratic adjustment costs to capital and fk fixed costs of in-

vestment. The implicit assumption here is that biased managerial expectations differ

from rational ones through their mean only. All other moments are rational. This can be

rationalized in a framework similar to ?.

To gauge whether adjustment costs have the potential to increase the effect of dis-

torted forecasts on firm-level efficiency, we proceed in the following steps. First, we

numerically solve the Bellman problem (10) using U.S. parameters from the estimation

of our baseline model (Section 5), and varying values of the adjustment cost paramater

ck (going from 0 (the baseline model) to ck = .2).6 We then re-solve this Bellman problem

6Using US plant-level data, Cooper and Haltiwanger (2006) estimate ck = .05 for a neoclassical model
of investment with quadratic and fixed adjustment costs.
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keeping the same parameters except for λ and γ, which we both set to 0: this corre-

sponds to our rational expectation benchmark. Third, for each set of parameters, we

simulate firm-level data from the solution to the Bellman problem. Fourth, we compute,

for each realization in the state space, the log-difference between the profits realized by

a firm with rational expectations and a firm with distorted forecasts.

We report the results on Figure C.1: as quadratic adjustment costs increase, we see

that the benefits of rational forecasts in terms of firm-level profits decrease. Intuitively,

adjustment costs play two roles in our model: (1) they make forecast errors more dis-

tortive, since the firm carries the inefficent capital longer (2) they make the firm less

sensitive to productivity forecasts, making forecast errors less distortive. Quantitatively,

the second effect dominates. Quadratic adjustment costs are therefore unlikely to make

biases in forecasts more important from a quantitative standpoint.

3.5.3 Longer time-to-build

Can a longer time-to-build for capital investment lead to greater inefficiencies from dis-

torted forecasts? Consider a simple extension to our baseline model where the capital

purchased at date t can only be used for production at date t + T. The baseline model

corresponds to T=1. The data generating process for TFP (νit) remains similar to our

baseline model. The firm’s investment decision at date t then becomes:

max
kit+T

{
ΩFt−1

[
e

Φ
αθ νit+T

]
kΦ

it+T − Rkit+T

}

The model of distorted forecasts specified in Equation 7 implies that the T-horizon

forecasts is given by:

ln
(

Ft−1

[
e

Φ
αθ νit+T

])
=

Φ
αθ

(
ρT(νit−1 + γωit−1) + (1 + λ)ρT−1ψit

)
+

1
2

(
Φ
αθ

)2

σ2
ω
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Intuitively, as the forecast horizon increases, the forecasting bias is reduced: TFP is

mean-reverting and managers understand that irrespective of their current forecast, the

long-term mean of the log-productivity process is 0. Therefore, inattention to current

levels of productivity does not really matter for long-term forecasts. Long-horizon in-

vestments are, if anything, less affected by managerial error than short horizon ones.

This comes from the fact that this model embeds no “long-term bias”. The diagnostic

ratios in the density (5) tend to 1 as horizon T increase. In this model, managers have

no reason to under- or overreact to recent news as they know they are not relevant for

long horizon forecasts anyways. A model with pure backward-looking extrapolation

would not have this property. Evidence from analyst forecasts (Bordalo et al. (2017b)) is

consistent with that.

3.5.4 Time-to-build in labor

In our baseline model, capital is the only quasi-fixed factor. We consider the case where

labor also needs to be hired one period ahead of production. Both capital and labor

depends on productivity forecasts, potentially giving a larger role for distorted forecasts

to reduce efficiency.

Appendix A.2 provides the derivation for the firm’s optimal investment and hiring

decision under this assumption. It also details how the model is estimated with this

alternative assumption.

Table 6 shows the moments used in the estimation and the corresponding parameter

estimates. The only difference with Table 5 comes from the moments related to TFP

residuals: in the model with time-to-build in both labor and capital, TFP residuals can

simply be computed as ln(pityit) − θ ln(kit).7. While the persistence of TFP residuals

remain the same, their overall variance is much higher (.051 vs. 008 in U.S. data). The

estimated forecasting biases – γ̂ and λ̂ – are almost similar to what they are in the base-

7In the baseline model, there is only time-to-build in capital and labor is optimized at date t, TFP
residuals are computed as: αθ

Φ (ln(pityit)−Φ ln(kit)).

25



line model (-.31 and -.037 in this model vs. -.32 and -.032 in the baseline U.S. estimation,

respectively). However, the volatility of both real innovations to TFP (σω) and private

information (ση) is much larger in this model to account for the larger volatility of overall

TFP residuals.

We use the estimation in Table 6 to conduct partial equilibrium counterfactuals, sim-

milar to those performed in Section 3.4. We compute the unconditional average realized

profits for managers with rational expectations E[π∗it] and managers with distorted fore-

casts E[πF
it], when the production exhibits time-to-build in both labor and capital. ∆ is

the percentage increase in average firm-level profits obtained due to rational expecta-

tions:

∆ =
E[π∗it]−E[πF

it]

E[πF
it]

= 4.610%
(1.218%)

in Italian data

= 0.306%
(0.088%)

in U.S. data

Clearly, effects are much larger (about 10 times larger) under this extension, as the

firm cannot as easily undo expectation errors once the shock materializes.

4 Aggregation

We nest the firm-level investment model of Section 3 into a general equilibrium frame-

work. This allows sto explore the cost of distortions induced by non-bayesian forecasts.

4.1 Aggregation in the baseline model

We consider a simple market structure following Dixit and Stiglitz (1977). There is a con-

tinuum of intermediate input producers: at date t, firm i is a monopoly and produces
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a quantity yit of an intermediary input at a price pit. These inputs are used in the pro-

duction of a final good. The final good market is perfectly competitive, and aggregates

intermediate inputs with a CES technology:

Yt =

(∫
i
yθ

itdi
) 1

θ

, (11)

The price of the final good is normalized to 1. Profit maximization in the final good

market implies that the demand for product i is given by: pit =
(

Y
yit

)1−θ
. There is

a single labor market from which all firms hire. wt is the wage, which firms take as

given. Households have GHH preferences over leisure and consumption: u(ct, lt) =(
ct − w0

L
1
ε
0

l1+ 1
ε

t
1+ 1

ε

)
. As a result, labor supply is L0

(
w
w0

)ε
and ε is the constant labor supply

elasticity.

We start by showing how the firm-level model of investment of Section 3 can be

nested into this framework. Assume firm i production combines labor and capital with

a Cobb-Douglas technology: yit = ezit kα
itl

1−α
it . The capital good is the final good. Log-

productivity zit is stochastic and follows an AR(1) process:

zit = ρzit−1 + εit + ηit with: (εit, ηit) ∼ N


0

0

 ,

σ2
ε 0

0 σ2
η


 ,

where ηit is privately observed by the manager in period t− 1. In particular, we assume

no aggregate uncertainty so that aggregate output is constant Yt = Y and the equilibrium

wage on the labor market is also constant wt = w. Given the input producers are

monopolists, profit maximization implies that firms revenue exhibit decreasing returns

to scale:

pityit = Y1−θ︸︷︷︸
=A

eθzit︸︷︷︸
=eνit

(
kα

itl
1−α
it

)θ

Therefore, this model is equivalent to the baseline firm-level model discussed in Sec-
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tion 3: A = Y1−θBθ, νit = θzit, ωit = θεit and ψit = θηit. As in our baseline firm-level

model, we assume a one period time-to-build in capital and a user cost of capital R.

Because of the time-to-build in capital, firms need to form expectations about next

period productivity. Let Ft−1 [pityit] be the managerial forecast of date t total sales made

at date t− 1. The log-sales forecast error is FEit = ln(pityit)− ln (Ft−1 [pityit]).

4.2 Measuring distortions

The following proposition provides two results on aggregate efficiency loss resulting

from non-rational expectations:

Proposition 2. Assume either:

• managerial log-sales forecasts are log-normally distributed

• variations in log-sales forecast error FEit and log-sales forecast ln (Ft−1 [pityit]) are small

around their respective mean

Then aggregate TFP is simply given by:

ln(TFP) = −α

2

(
1 +

αθ

1− θ

)
Var [FEit] (12)

Proof. See Appendix A.4.

Proposition 2 is based on the observation that forecast errors made when investing

are formally equivalent to a wedge between the real cost of capital R and the marginal

productivity of capital αθ
pityit

kit
. When the realization of productivity is lower than the

forecast, the firm has too much capital compared to the frictionless benchmark where

there is no time to build and the firm would observe its productivity when investing.

Hence, the marginal productivity of capital is lower than R in this case. As in Hsieh

and Klenow (2009), when this wedge is assumed to follow a log-normal distribution,
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log-aggregate TFP is proportional to the dispersion in the log-wedge. In our case this

assumption is equivalent to managerial forecasts following a log-normal distribution.

Alternatively, one can assume small variations of wedges and TFP realizations around

their means (or equivalently here, small variations in log-sales forecast errors and log-

sales forecasts) and obtain a similar formula through a second-order Taylor expansion

around the population average. Importantly, note that the TFP formula in Proposition 12

holds for all forecasting rules Ft−1 as long as it either follows a log-normal distribution

or generates only small variations around the average forecast in the population.

We derive two corollaries from the above proposition. The first one offers an upper

bound for TFP loss of irrationality. This upper bound does not require estimating the

structural model of Section 3. The second corollary explicitly computes the TFP loss

from non-bayesian expectations defined in equation (5).

Corollary 1. For any forecasting rule satistfying the assumptions of Equation (5), the TFP losses

due to imperfect foresight are:

∆ ln(TFP)0 = ln(TFPperfect foresight)− ln(TFP) =
α

2

(
1 +

αθ

1− θ

)
Var [FEit]

In particular, the TFP losses due to observed forecasts are bounded by:

∆ ln(TFP) = ln(TFPrational forecasts)− ln(TFP) < ∆ ln(TFP)0 =
α

2

(
1 +

αθ

1− θ

)
Var

[
F̂Eit

]

Proof. See Appendix A.5

Corollary 1 is important because it provides us with a simple bound for the TFP losses

due to non-rational forecasts, which requires minimal assumptions on the forecasting

rules used by managers. This bound is also easily implementable, since the variance of

log-sales forecast errors is directly observed in the data.

The second corollary provides us with
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Corollary 2. Assume that managers form expectation using the distorted belief model of equation

(5). Forecasts follow a log-normal distribution, and the TFP losses due to non-rational forecasts

are given by:

∆ ln(TFP) =
1
2

(
θ

1− θ

)(
θα

1− (1− α)θ

)(
γ2ρ2σ2

ε + λ2σ2
η

)
(13)

Proof. See Appendix A.6

The above formula is easy to interpret: it increases with α the share of distorted input.

It increases with the amount of forecast variance generated by non-biased expectations.

4.3 Estimation

We can combine the results in this section with the structural estimates recovered in

Section 3.2 to quantify the TFP losses from non-rational forecasts in our context.

We can start by bounding the TFP losses using Corollary 1, which, again, does not

rely on a particular forecasting rules:

∆ ln(TFP) ≤ α

2

(
1 +

αθ

1− θ

)
︸ ︷︷ ︸

=0.383

Var
[

F̂Eit

]

≤ 1.159% in Italian data

≤ 0.277% in U.S. data

As for expected profits, distortions induced by forecast errors are bigger in Italian

than in US data. This is directly reflecting the fact that the variance of forecast errors in

Italy is 4 times as large as in the U.S. This is due to the fact that (1) Italian firms are more

volatile to start with and (2) Italian firms make bigger forecast error.

To get to the counterfactuals where managers have rational expectations, we use

instead 2, combined with the structural estimates obtained in Panel B of Table 5:

30



∆ ln(TFP) =
1
2

(
θ

1− θ

)(
θα

1− (1− α)θ

)
︸ ︷︷ ︸

=1.138

(
γ2ρ2σ2

ε + λ2σ2
η

)

= 0.328% in Italian data

= 0.012% in U.S. data

The effect on Italian data is about 30 times larger than on U.S. data. This is to be

expected as γ is about 2.5 times larger and σω about 2 times larger. This directly comes

from the fact that the persistence of forecasts errors and TFP shock variances are much

larger in Italy. Given that the TFP formula is a function of the square of γσω, such a

large difference is fully in line with the data.

Our conclusions remains broadly unaffected when we consider alternative calibra-

tions for α and θ. We provide comparative statics w.r.t. these two parameters (using

U.S. data) in Figure C.2. On the left panel of Figure C.2, we fix α = 1/3 and let θ vary

from .69 to .99. On the right panel, we fix θ = .8 and let α vary from .1 to .7. For each

calibrated value, we estimate the moments in Panel A, Table 5 and then reestimate the

model following the methodology developed in Section 3.2. We then compute the TFP

losses using Equation 13. Variations in α lead to modest variations in the estimated TFP:

from .02% when α is equal to .1 to .5% when α is .7. For θ below .95, we get the same

conclusion: going from θ = .7 to θ = .95 leads to TFP losses ranging from .1% to .5%.

When θ becomes closer to 1, however, TFP losses can become quite significant: a high θ

implies a very high degree of substitutions across firms output such that optimist firms

(i.e. a firm with negative TFP news ωt−1) may end up representing a large fraction of

total output, distorting allocating efficicency.
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4.4 Aggregation with Time-to-build in labor

With time-to-build in labor, it is direct to see that the model is equivalent to a model with

a capital wedge and a labor wedge that are both equal to the log-sales forecast error:

ln(1 + τk
it) = ln(1 + τl

it) = νit − ln (Ft−1 [eνit ]) = ln(pityit)− ln (Ft−1 [pityit]) = FEit

We can apply Proposition B4 in Sraer and Thesmar (2018) and obtain:

ln(TFP) = −
(

α +
1
2

θ

1− θ

)
Var [FEit]

Using the formula for the variance in the log-sales forecast error in Section A.2, it is

direct to show that the TFP losses due to distorted forecast when there is time-to-build

in labor are simply given by:

∆ ln(TFP) =
(

α +
1
2

θ

1− θ

)(
γ2ρ2σ2

ω + λ2σ2
ψ

)
= 2.917% in Italian data

= 0.105% in U.S. data

As expected, the TFP losses are much larger with time-to-build in labor. This happens

because labor is not optimally reallocated across firms in response to shocks, thereby

increasing ex-post distortions.

4.5 Incorporating aggregate shocks

[TO BE DONE]
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5 Conclusion

This paper incorporates forecasts into an otherwise standard neoclassical model of in-

vestment. Our model allows for managerial private information, distortion in the reports

of forecasts as well as distorted forecasts due to non-rational expectations. We first doc-

ument significant bias in managerial forecasts in guidance data: managerial forecast

errors are persistent in a statistically significant way. This predictability is consistent

with underreaction to new information by managers. When nested into a model of pro-

duction, the estimated forecasting bias lead to sizable efficiency losses, both in partial

and general equilibrium.

We think two deviations from the standard model could potentially allow for a

greater role of distorted forecasts. First, a longer time-to-build is a clear candidate:

however, our managerial forecasts data does not cover long-term forecasts, so that we

cannot estimate a model with a longer time-to-build. Financial frictions may also lead to

amplifications of distorted forecasts. We leave this analysis for future research.
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FIGURES

Figure 1: Forecast Errors: Histogram

Note: This figure plots the distribution of log-sales forecast errors. The log-sales forecast
error is computed as the difference between realized sales in fiscal year t and sales
forecast for year t issued at the beginning of year t.

Figure 2: Forecast Error Persistence: Binned Scatter Plot

Note: This figure is a binscatter plot of year t log-sales forecast error on year t− 1 log-
sales forecast error.
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Figure 3: Firm Investment with Rational vs. Distorted Forecasts

Panel A: Italian data

Panel B: U.S. data

Note: This figure uses the estimation of Table 5 to simulate investment for managers
using rational forecast (dark squares) or distorted forecasts (white diamonds). We con-
struct 20 buckets of date t-1 TFP surprise (ωt−1) and compute, for each of these buckets,
average log capital growth for both managers with rational forecasts (γ = λ = 0) and
managers with distorted forecasts (γ and λ at their estimated values). In Panel A, we
use results from Italian data. In Panel B, we use results from U.S. data.
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Figure 4: Firm Profits with Rational vs. Distorted forecasts
Panel A: Italian data

Panel B: U.S. data

Note: This figure uses the estimation of Table 5 to simulate expected profit losses for
managers using distorted forecasts relative to managers using fully rational forecasts
(i.e. with γ = λ = 0). We construct 20 buckets of date t innovations (ωt) and compute
average profit losses, for each of these buckets. In Panel A, we use Italian estimates. In
Panel B, we use U.S. estimates.
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TABLES

Table 1: Summary Statistics

Variable mean p25 p50 p75 sd N

Panel A. Italian merged survey and accounts
Firm forecast error (log actual sales(t) - log forecast(t—t-1)) -0.01 -0.09 -0.01 0.07 0.18 37,789
Log sales 10.03 8.93 9.84 10.98 1.55 37,789
Log assets 10.09 9.00 9.88 11.01 1.56 37,789
Sales/l.assets 1.14 0.70 1.01 1.41 0.66 37,395
Capex/l.assets 0.03 0.01 0.02 0.04 0.04 36,776
Cash flow/l.assets 0.07 0.03 0.06 0.10 0.07 36,947

Panel B2. Italian accounting data
Log sales 6.16 5.00 6.20 7.36 1.90 7,350,380
Log assets 6.09 4.93 6.10 7.28 1.86 8,261,704
Sales/lassets 1.24 0.34 1.00 1.73 1.21 8,164,493
Capex/lassets 0.02 0.00 0.01 0.03 0.03 7,650,925
Cash flow/lassets 0.05 0.00 0.04 0.10 0.12 7,953,679

Note: Summary statistics. Panel A focuses on Italian firms for which sales forecasts were available from
the Bank of Italy. Panel B produces the same descriptive statistics for the universe of Italian firms present
in the Company Accounts Data System. Firm forecast error is the log difference between actual sales of
fiscal year t and sales forecast at the beginning of year t. All variables are winsorized at the median +/- 5
times the interquartile range.
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Table 2: Predicting Actual Sales

Actual Sales
(1) (2) (3) (4) (5) (6)

Firm forecast 0.974*** 0.862*** 0.854*** 0.836*** 0.822*** 0.664***
(0.007) (0.017) (0.016) (0.018) (0.016) (0.020)

Log(l.Sales) 0.139*** 0.147*** 0.159*** 0.175*** 0.141***
(0.018) (0.017) (0.021) (0.017) (0.028)

Log(l.Assets) -0.136*** -0.145*** -0.158*** -0.173*** -0.289***
(0.018) (0.016) (0.021) (0.017) (0.023)

Constant 0.027*** 0.136*** 0.141*** 0.179*** 0.187*** 1.873***
(0.006) (0.023) (0.022) (0.025) (0.024) (0.163)

Fixed effects No No Year Industry Ind-Year Firm&Year
Observations 37,317 37,315 37,315 37,315 37,153 37,261
Adj R2 0.90 0.90 0.91 0.91 0.91 0.93

Note: This table presents regressions: salesit/assetsi,t−1 = α+ Fi,t−1salesit/assetsi,t−1 + controlsi,t−1, where salesit is sales of
firm i in fiscal year t, Fi,t−1salesit is beginning-of-year forecast of fiscal year t sales (normalized by lagged assets). Industry
dummies are 2-digit industry dummies in Italian data. Standard errors are double-clustered by firm and year. ***, ** and
* means statistically significant at the 1%, 5% and 10% confidence level.
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Table 3: Sales Forecasts and Capital Investment

Log kit
(1) (2)

log Ft−1salesit 0.370***
(0.037)

log salesit − log Ft−1salesit 0.580***
(0.027)

Fixed effects Firm&Year Firm&Year
Observations 31,960 30,772
Adj R2 0.86 0.91

Note: This table presents regressions where the left-hand-side is log kit where kit is capital (net PPE) in year t. In column
(1), the right-hand-side is log Fi,t−1salesit, where Fi,t−1salesit is beginning-of-year forecast of fiscal year t sales. In column
(2), the right-hand-side is log salesit − log Fi,t−1salesit. Standard errors are double-clustered by firm and year. ***, ** and *
means statistically significant at the 1%, 5% and 10% confidence level.
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Table 4: Persistence of Forecast Errors

Forecast error
(1) (2)

Forecast error(t-1) 0.324*** 0.172***
(0.017) (0.014)

Year FE Yes Yes
Firm FE No Yes
Observations 32,383 18,628
Adj R2 0.12

Note: In this table, we regress the log-sales forecast error (log actual sales minus log sales forecast made in
first quarter of fiscal year t) on log-sales forecast error of year t− 1. Columns (1) includes year fixed-effects
and is estimated using OLS on the sample of firms with at least 5 sales forecasts. Columns (2) includes
both year and firm fixed-effects, and is estimated using dynamic panel GMM (Arellano and Bover (1995))
on the sample of firms with at least 9 sales forecasts. Standard errors are clustered by both firm and time.
***, ** and * means statistically significant at the 1%, 5% and 10% confidence level.
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Table 5: Structural Estimation of Baseline Investment Model with Distorted Beliefs

Panel A: Italian business survey data

Moments:
χ̂ σ̂2

τ V̂ar[F̂Eit] κ̂1 κ̂2 κ̂3

0.935 0.076 0.030 0.316 0.440 0.580
( 0.062) ( 0.004) ( 0.001) ( 0.011) ( 0.018) ( 0.028)

Estimates:
γ̂ λ̂ ρ̂ σ̂ω σ̂ψ σ̂ζ

-0.865 -0.049 0.935 0.051 0.272 0.113
( 0.076) ( 0.005) ( 0.062) ( 0.002) ( 0.008) ( 0.004)

Panel B: U.S. Managerial guidance data

Moments:
χ̂ σ̂2

τ V̂ar[F̂Eit] κ̂1 κ̂2 κ̂3

0.785 0.009 0.007 0.183 0.344 0.889
( 0.031) ( 0.001) ( 0.000) ( 0.024) ( 0.016) ( 0.068)

Estimates
γ̂ λ̂ ρ̂ σ̂ω σ̂ψ σ̂ζ

-0.275 0.022 0.785 0.036 0.086 0.028
( 0.046) ( 0.015) ( 0.031) ( 0.002) ( 0.005) ( 0.011)

Note: Panel A focuses on Italian firms for which sales forecasts were available from the Bank of Italy
business survey. Panel B focuses on COMPUSTAT (i.e. listed) firms for which managerial guidances and
analyst forecasts were available – at least 5 of them. Moments are defined as follows. We first define
νit =

(
αθ
Φ

)
(ln(pityit)−Φ ln(kit)). We estimate ν̂it = δi + δt + χν̂it + τit using dynamic panel GMM. χ̂ and

σ̂2
τ are the estimated persistence and variance of residuals. V̂ar[F̂Eit] is the variance of residuals from a

regression of log-sales forecast errors on year fixed-effects. κ̂1 is the estimated coefficient from a regression
of log-sales forecast error on lagged log-sales forecast error, controlling for year fixed-effects. κ̂2 is the
estimated coefficient of a regression of date t productivity residual, τ̂it on date-t reported log-sales forecast
error, controlling for firm and year fixed-effects. κ̂3 is the estimated coefficient of a regression of the log
sales-to-capital ratio, ln(pityit) − ln(kit), on date-t reported log-sales forecast error, controlling for firm
and year fixed-effects. γ̂ and λ̂ are the estimated coefficient characterizing distorted expectations. ρ̂ is
the estimated persistence of TFP. σ̂ω is the estimated volatility of TFP innovations. σ̂ψ is the volatility of
private information. σ̂ζ is the volatility of noise introduced by managers in reported forecasts. Standard
error are obtained by bootstrapping on the estimation sample using a block bootstrap at the firm-level.
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Table 6: Structural Estimation of Investment Model with Distorted Beliefs and Time-to-
build in Labor

Panel A: Italian business survey data

TO BE DONE

Panel B: U.S. Managerial guidance data

Moments
χ̂ σ̂2

τ V̂ar[F̂Eit] κ̂1 κ̂2 κ̂3

0.799 0.053 0.007 0.183 0.798 0.889
( 0.030) ( 0.005) ( 0.000) ( 0.024) ( 0.037) ( 0.068)

Estimates
γ̂ λ̂ ρ̂ σ̂ω σ̂ψ σ̂ζ

-0.269 0.008 0.799 0.078 0.217 0.028
( 0.046) ( 0.010) ( 0.030) ( 0.004) ( 0.011) ( 0.011)

Note: Panel A focuses on Italian firms for which sales forecasts were available from the Bank of Italy
business survey. Panel B focuses on COMPUSTAT (i.e. listed) firms for which managerial guidances and
analyst forecasts were available – at least 5 of them. Moments are defined as follows. We first define
νit = ln(pityit) − θ ln(kit). We estimate ν̂it = δi + δt + χν̂it + τit using dynamic panel GMM. χ̂ and σ̂2

τ

are the estimated persistence and variance of residuals. V̂ar[F̂Eit] is the variance of residuals from a
regression of log-sales forecast errors on year fixed-effects. κ̂1 is the estimated coefficient from a regression
of log-sales forecast error on lagged log-sales forecast error, controlling for year fixed-effects. κ̂2 is the
estimated coefficient of a regression of date t productivity residual, τ̂it on date-t reported log-sales forecast
error, controlling for firm and year fixed-effects. κ̂3 is the estimated coefficient of a regression of the log
sales-to-capital ratio, ln(pityit) − ln(kit), on date-t reported log-sales forecast error, controlling for firm
and year fixed-effects. γ̂ and λ̂ are the estimated coefficient characterizing distorted expectations. ρ̂ is
the estimated persistence of TFP. σ̂ω is the estimated volatility of TFP innovations. σ̂ψ is the volatility of
private information. σ̂ζ is the volatility of noise introduced by managers in reported forecasts. Standard
error are obtained by bootstrapping on the estimation sample using a block bootstrap at the firm-level.
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APPENDIX – FOR ONLINE PUBLICATION

A Proofs

A.1 Proof of Proposition 1
At date t, the firm hires employees after observing date t revenue-based productivity to maximize profits:

Πit = max
lit

{
Aeνit kαθ

it l(1−α)θ
it − wlit

}
= Ωe

Φ
αθ νit kΦ

it ,

where Φ = αθ
1−(1−α)θ

and Ω = (1− (1− α)θ)
(
(1−α)θ

w

) 1−α
α Φ

A
Φ
αθ . Let Fit−1[e

Φ
αθ νit ] be firm i’s forecast at date

t− 1. At date t− 1, firm i’s capital stock is purchased to maximize expected profits:

max
kit

{
ΩFit−1

[
e

Φ
αθ νit

]
kΦ

it − Rkit

}
⇒ kit =

(
Φ
R

) 1
1−Φ

Ω
1

1−Φ

(
Fit−1

[
e

Φ
αθ νit

]) 1
1−Φ

With our formulation of distorted expectations:

ln
(

Fit−1

[
e

Φ
αθ νit

])
=

Φ
αθ

(ρ(νit−1 + γωit−1) + (1 + λ)ψit) +
1
2

(
Φ
αθ

)2
σ2

ω

Since kit is purchased at date t− 1, the date t-1 true forecast for date-t sales is:

Fit−1 [pityit] =
Ω

1− (1− α)θ
Fit−1

[
e

Φ
αθ νit

]
kΦ

it

So that the log-sales forecast error at date t is:

FEit = ln(pityit)− ln (Fit−1 [pityit])

=
Φ
αθ

νit − ln
(

Fit−1

[
e

Φ
αθ νit

])
= − Φ

αθ
(γρωit−1 + λψit) +

Φ
αθ

ωit −
1
2

(
Φ
αθ

)2
σ2

ω

Φ
αθ ωit − 1

2

(
Φ
αθ

)2
σ2

ω corresponds to rational expectation errors.− Φ
αθ (γρωit−1 + λψit) corresponds to expec-

tation errors due to managers’ distorted forecasts.
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Accounting for mis-reporting of true forecasts, observed forecast errors are given by:

F̂Eit = ln(pityit)− ln
(

F̂it−1 [pityit]
)

= ln(pityit)− ln (Fit−1 [pityit])− ζit

= − Φ
αθ

(γρωit−1 + λψit) +
Φ
αθ

ωit −
1
2

(
Φ
αθ

)2
σ2

ω − ζit,

where ζit is the “noise” introduced by managers in their reported forecasts.
The variance of log-sales forecast errors in the data is therefore given by:

Var[F̂Eit] = σ2
ζ +

(
Φ
αθ

)2 (
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
The covariance of date-t and date-t-1 reported log-sales forecast errors writes:

Cov
[

F̂Eit, F̂Eit−1

]
= −

(
Φ
αθ

)2
γρσ2

ω

Distorted beliefs lead to persistence in forecast errors. An unusually large innovation ωit−1 implies a
positive forecast error today. For an agent over-weighting such unusually large realization (i.e. γ > 0),
this large innovation means a high forecast for date t sales, which leads, on average, to a negative forecast
error at date t.

A regression of reported log-sales forecast errors at date t on reported log-sales forecast errors at date
t− 1 leads to a regression coefficient κ1:

κ1 = −

(
Φ
αθ

)2
γρσ2

ω

σ2
ζ +

(
Φ
αθ

)2 (
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
The covariance of log-productivity innovations (as measured by the econometrician) and reported

log-sales forecast errors is:

Cov
[
ωit + ψit, F̂Eit

]
=

(
Φ
αθ

)(
σ2

ω − λσ2
ψ

)
A regression of date t log-productivity innovations on date-t reported log-sales forecast leads to a

regression coefficient κ2:

κ2 =

(
Φ
αθ

) (
σ2

ω − λσ2
ψ

)
σ2

ζ +
(

Φ
αθ

)2 (
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
Finally, from the formula for log-sales forecast, note that:

Fit−1 [pityit] =

(
Φ
R

) Φ
1−Φ Ω

1
1−Φ

1− (1− α)θ

(
Fit−1

[
e

Φ
αθ νit

]) 1
1−Φ

=
R
αθ

kit

Therefore, the sales to capital ratio is related to the true log-sales forecast in the following way:

ln(pityit)− ln(kit) = ln(pityit)− ln(Fit−1 [pityit]) + ln
(

αθ

R

)
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Since we observe only reported log-sales forecast:

ln(pityit)− ln(kit) = ln(pityit)− ln(F̂it−1 [pityit]) + ζit + ln
(

αθ

R

)
As a result, a regression of the log-sales-to-capital ratio on the reported log-sales forecast error should

have a coefficient of:

κ̂3 = 1−
σ2

ζ

Var
[

F̂Eit

]
A.1.1 Estimation of model with adjustment cost

A.2 Derivation of model with time-to-build in labor
With time-to-build in labor and capital, the firm maximizes:

max
kit ,lit

AFt−1 [eνit ]
(

kα
itl

1−α
it

)θ
− wlit − Rkit

The first-order condition in labor implies:

lit =
(
(1− α)θ

w
AFt−1 [eνit ]

) Φ
αθ

kΦ
it

And the first-order condition in capital leads writes:

αθ

R
AFt−1 [eνit ] l(1−α)θ

it kαθ−1 = 1

After injecting the labor FOC and simplifying, this leads to:

kit =

(
αθ

R

) 1−(1−α)θ
1−θ

(
(1− α)θ

w

) (1−α)θ
1−θ

(AFt−1 [eνit ])
1

1−θ

And labor demand is simply:

lit =
(

αθ

R

) αθ
1−θ
(
(1− α)θ

w

) 1−αθ
1−θ

(AFt−1 [eνit ])
1

1−θ

Therefore, the firm revenue is simply:

pityit = Aeνit kαθ
it l(1−α)θ

it = A
1

1−θ

(
αθ

R

) αθ
1−θ
(
(1− α)θ

w

) (1−α)θ
1−θ

eνit (Ft−1 [eνit ])
θ

1−θ

Forecasted sales at date t− 1 is just simply:

Ft−1 [pityit] = A
1

1−θ

(
αθ

R

) αθ
1−θ
(
(1− α)θ

w

) (1−α)θ
1−θ

(Ft−1 [eνit ])
1

1−θ

And the log-sales forecast error is given by:

ln(pityit)− ln (Ft−1 [pityit]) = νit − ln (Ft−1 [eνit ]) = − (γρωit−1 + λψit) + ωit −
1
2

σ2
ω
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The variance of log-sales forecast errors in the data is therefore given by:

Var[F̂Eit] = σ2
ζ +

(
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
A regression of reported log-sales forecast errors at date t on reported log-sales forecast errors at date

t− 1 leads to a regression coefficient κ1:

κ1 = − γρσ2
ω

σ2
ζ + (1 + γ2ρ2)σ2

ω + λ2σ2
ψ

A regression of date t log-productivity innovations on date-t reported log-sales forecast leads to a regres-
sion coefficient κ2:

κ2 =
σ2

ω − λσ2
ψ

σ2
ζ + (1 + γ2ρ2)σ2

ω + λ2σ2
ψ

Finally, from the formula for log-sales forecast, note that:

Fit−1 [pityit] =

(
Φ
R

) Φ
1−Φ Ω

1
1−Φ

1− (1− α)θ

(
Fit−1

[
e

Φ
αθ νit

]) 1
1−Φ

=
R
αθ

kit

Therefore, the sales to capital ratio is related to the true log-sales forecast in the following way:

ln(pityit)− ln(kit) = ln(pityit)− ln(Fit−1 [pityit]) + ln
(

αθ

R

)
Since we observe only reported log-sales forecast:

ln(pityit)− ln(kit) = ln(pityit)− ln(F̂it−1 [pityit]) + ζit + ln
(

αθ

R

)
As a result, a regression of the log-sales-to-capital ratio on the reported log-sales forecast error should

have a coefficient of:

κ̂3 = 1−
σ2

ζ

Var
[

F̂Eit

]
We can therefore estimate this extended model as we did the baseline model. We start by first comput-

ing TFP residual. Note that with time-to-build in both labor and capital, the capital labor ratio is constant:

lit =
(
(1−α)θ

w

) (
αθ
R

)
kit. Therefore, pityit = A

(
(1−α)θ

w

)(1−α)θ (
αθ
R

)(1−α)θ
eνit kθ

it. We can thus construct TFP
residuals as ln(pityit)− θ ln(kit).

A.3 Derivation of model with CES production function
At date t, the firm maximizes profit by selecting labor:

max
lit

Aeνit

[
αk

ξ−1
ξ

it + (1− α)l
ξ−1

ξ

it

]θ ξ
ξ−1

− wlit

The first-order condition in labor implies:

Aeνit l−
1
ξ

[
αk

ξ−1
ξ

it + (1− α)l
ξ−1

ξ

it

]θ ξ
ξ−1−1

=
w

(1− α)θ
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This defines labor choice lit as a function of kit, the capital stock selected at date t − 1 and νit, the
realization of the date t productivity shock: l(kit, νit)

At date t− 1, the firm maximizes date t revenue by selecting its capital stock

max
kit

AFt−1

eνit

[
αk

ξ−1
ξ

it + (1− α)l(kit, νit)
ξ−1

ξ

]θ ξ
ξ−1

− wl(kit, νit)

− Rkit

This leads to the following first-order condition:

AFt−1

eνit θ

(
αk
− 1

ξ

it + (1− α)
∂l
∂k

(kit, νit)l(kit, νit)
− 1

ξ

) [
αk

ξ−1
ξ

it + (1− α)l(kit, νit)
ξ−1

ξ

]θ ξ
ξ−1−1

− w
∂l
∂k

(kit, νit)

 = R

Injecting the labor FOC, this implies:

AFt−1

eνit θαk
− 1

ξ

it

[
αk

ξ−1
ξ

it + (1− α)l(kit, νit)
ξ−1

ξ

]θ ξ
ξ−1−1

 = R,

which can also be rewritten as:

Ft−1

[
l(kit, νit)

1
ξ

]
=

(
R
αθ

(1− α)θ

w

)
k

1
ζ

it

We assume that variations in νit are small around its forecasted mean: Ft−1[νit]. We consider a first-
order approximation to the first-order condition:

Ft−1

[
l(kit, νit)

1
ξ

]
= Ft−1

[
l(kit, Ft−1[νit])

1
ξ + (νit −Ft−1[νit])

(
1
ξ

)
∂l
∂ν

(kit, Ft−1[νit]) l(kit, Ft−1[νit])
1
ξ−1
]

This simplifies into:

l(kit, Ft−1[νit])
1
ξ =

(
R
αθ

(1− α)θ

w

)
k

1
ζ

it

This is simply the first-order condition evaluated at the average forecast for νit (conditional on the
information available at t− 1). The first-order terms in νit − ν0

t are forecasted by the agents to be 0, and
therefore do not appear in this first-order condition.

Using the labor FOC evaluated at νit = Ft−1 [νit], we see that:

A
(
(1− α)θ

w

)
eFt−1[νit ]

α

(
kit

l(kit, Ft−1[νit])

) ξ−1
ξ

+ (1− α)

θ ξ
ξ−1−1

= l(kit, Ft−1[νit])
1−θ

Using the previous equation for the expected capital-labor ratio, we can solve for the optimal capital choice
given belief Ft−1 [νit]:

kit = AeFt−1[νit ]

(
αθ

R

)ξ
(

α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
) 1−(1−θ)ξ

(1−θ)(ξ−1)

When the realized TFP νit is equal to its average, we also get the optimal labor:

lit(kit, Ft−1 [νit]) = AeFt−1[νit ]

(
(1− α)θ

w

)ξ
(

α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
) 1−(1−θ)ξ

(1−θ)(ξ−1)
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For other realizations, we use a first-order expansion:

lit(kit, νit) = lit(kit, Ft−1 [νit]) + (νit −Ft−1[νit])
∂l
∂ν

(kit, Ft−1 [νit])

The two first-order conditions are simply:
θ(1− α)AFt−1 [eνit ] l

− 1
ξ

it

[
αk

ξ−1
ξ

it + (1− α)l
ξ−1

ξ

it

] 1−(1−θ)ξ
ξ−1

= w

θαAFt−1 [eνit ] k
− 1

ξ

it

[
αk

ξ−1
ξ

it + (1− α)l
ξ−1

ξ

it

] 1−(1−θ)ξ
ξ−1

= R

The labor / capital ratio depends only on factor prices:

kit
lit

=

(
α

1− α

w
R

)ξ

By injecting this constant ratio into the firm’s FOC, we obtain:
lit =

(
(1− α)θ

w

)ξ

(AFt−1 [eνit ])
1

1−θ

(
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
) 1−(1−θ)ξ

(1−θ)(ξ−1)

kit =

(
αθ

R

)ξ

(AFt−1 [eνit ])
1

1−θ

(
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
) 1−(1−θ)ξ

(1−θ)(ξ−1)

Firm i output is simply:

pityit = Aeνit (AFt−1 [eνit ])
θ

1−θ

[
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
] θ

(ξ−1)(1−θ)

Since labor is proportional to capital, we can compute TFP residuals by remarking that:

ln (pityit)− θ ln(kit) = νit + ln(A) + θξ ln
(

αθ

R

)
+

θξ

ξ − 1
ln

[
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
]

Note that the log-sales forecast errors is similar to the one derive in the model with time to build in
labor:

ln(pityit)− ln (Ft−1 [pityit]) = νit − ln (Ft−1 [eνit ]) = − (γρωit−1 + λψit) + ωit −
1
2

σ2
ω

The variance of log-sales forecast errors in the data is therefore given by:

Var[F̂Eit] = σ2
ζ +

(
(1 + γ2ρ2)σ2

ω + λ2σ2
ψ

)
A regression of reported log-sales forecast at date t on reported log-sales forecast at date t− 1 leads

to a regression coefficient κ1:

κ1 = − γρσ2
ω

σ2
ζ + (1 + γ2ρ2)σ2

ω + λ2σ2
ψ

A regression of date t log-productivity innovations on date-t reported log-sales forecast leads to a regres-
sion coefficient κ2:

κ2 =
σ2

ω − λσ2
ψ

σ2
ζ + (1 + γ2ρ2)σ2

ω + λ2σ2
ψ
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Finally, from the formula for log-sales forecast, note that:

Fit−1 [pityit] =

(
αθ

R

)−ξ
[

α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
]

kit

Therefore, the sales to capital ratio is related to the true log-sales forecast in the following way:

ln(pityit)− ln(kit) = ln(pityit)− ln(Fit−1 [pityit]) + ξ ln
(

αθ

R

)
− ln

[
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
]

Since we observe only reported log-sales forecast:

ln(pityit)− ln(kit) = F̂Eit + ζit + ξ ln
(

αθ

R

)
− ln

[
α

(
αθ

R

)ξ−1
+ (1− α)

(
(1− α)θ

w

)ξ−1
]

As a result, a regression of the log-sales-to-capital ratio on the reported log-sales forecast error should
have a coefficient of:

κ̂3 = 1−
σ2

ζ

Var
[

F̂Eit

]
We can therefore estimate this model exactly the same way we estimated the model with time-to-build

in labor.

A.4 Proof of Proposition 2
We first take capital as given, and maximize profit with respect to labor given wage. We obtain:

πit = (1− θ(1− α))Y1−φe
φzit

α kφ

(
(1− α)θ

w

) 1−α
α φ

where φ = θα
1−θ(1−α)

.
We then take the forecast F of the above expression, and maximize it with respect to capital kit. We

obtain the following formula for the revenue productivity of capital:

αθ
pityit

kit
= (r + δ)

e
Φzit

α

Ft−1e
Φzit

α︸ ︷︷ ︸
≡1+τit

Time to build acts like a wedge τit between the effective cost of capital and the frictionless cost of
capital. This wedge has a rational and bias component. Given that the mean of z is zero and that the
innovation on z is� 1, we rewrite the log wedge as:

ln(1 + τit) =
Φ
α

zit − ln
(

Ft−1

[
e

Φ
α zit
])

= ln(pityit)− ln (Ft−1[pityit]) = FEit

In other words, the log-sales forecast error acts as a capital wedge for the firm. Based on this observa-
tion, we can use the formula in Sraer and Thesmar (2018) to calculate log TFP when the log-sales forecast
is log-normally distributed (so that productivity and the log-sales forecast errors are jointly log-normally
distributed), or alternatively, when variations in the log-sales forecast errors and productivity are small
around their respective mean, so that we can consider a 2nd order Taylor expansion around these means.
This directly provides the formula in Proposition 2.
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A.5 Proof of Corollary 1
The variance of forecast errors when managers have perfect foresight is 0, which proves the first part of
the Corollary.
The variance of forecast errors when managers have rational expectation is ≥ 0. Additionally, reported
log-sales forecast error have larger variance than actual log-sales forecast errors: Var [FEit] ≤ Var

[
F̂Eit

]
.

This proves the second part of the Corollary.

A.6 Proof of Corollary 2
When managers form expectation using Equation 7, their log-sales forecasts is given by: ln(Ft−1 [pityit]) =

C + θ
1−θ (ρ(zit−1 + γεit−1) + (1 + λ)ηit), where C is constant across firms (see Appendix A.4 with ν = θz,

ω = θε and ψ = θη). Therefore, since z, ε and η are log-normally distributed, the log-sales forecast are
log-normally distributed, and Proposition 2 applies. The variance of log-sales forecast errors is simply:

Var [FEit] =
(

Φ
α

)2 (
(1 + γ2ρ2)σ2

ε + λ2σ2
η

)
(see Appendix A.4). Therefore, TFP in the actual economy is:

ln(TFP) = − 1
2

(
Φ

1−Φ

) (
Φ
α

) (
(1 + γ2ρ2)σ2

ε + λ2σ2
η

)
. When managers have rational forecasts, γ = λ =

0 and ln(TFPrational forecasts) = − 1
2

(
Φ

1−Φ

) (
Φ
α

)
σ2

ε . The difference between these two expression is the
formula in the corollary.
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B Appendix Tables

Table B.1: Forecast Errors on Forecast Revisions by Firm Size (Italian Data)

Forecast error
(1) (2)

Panel A: Firms with 20-49 employees
Forecast error(t-1) 0.289*** 0.143***

(0.026) (0.023)
Observations 10,712 5,537
Adj R2 0.09

Panel B: Firms with 50-99 employees
Forecast error(t-1) 0.302*** 0.153***

(0.025) (0.027)
Observations 7,106 4,142
Adj R2 0.11

Panel C: Firms with 100-199 employees
Forecast error(t-1) 0.345*** 0.211***

(0.027) (0.033)
Observations 5,739 3,486
Adj R2 0.15

Panel D: Firms with 200-500 employees
Forecast error(t-1) 0.360*** 0.192***

(0.031) (0.036)
Observations 4,968 2,995
Adj R2 0.16

Panel E: Firms with 501- employees
Forecast error(t-1) 0.421*** 0.180***

(0.050) (0.044)
Observations 3,858 2,468
Adj R2 0.20

Firm FE No Yes
Year FE Yes Yes

Note: This Table only use Italian data. It reproduces the regressions of Table 4, panel A, for different
firm size groups. Each panel corresponds to regression results for one size group. ***, ** and * means
statistically significant at the 1%, 5% and 10% confidence level.

54



Table B.2: Forecast Errors on Forecast Revisions (U.S. Data only)

Forecast error
(1) (2)

Manager Analyst

Forecast revision 0.33*** 0.35***
(0.04) (0.035)

Constant 0.007** -0.005*
(0.0028) (0.003)

Year FE Yes Yes
Obs 8,949 7,673
R2 0.021 0.034

Note: This Table only use U.S. data, since Italian data do not offer multi-horizon forecasts. We regress here
year t log-sales forecast error on the change in the log sales forecast since the last forecast for fiscal year
t sales (forecast revision). Unfortunately U.S. guidance data – as opposed to analyst data – only rarely
provide multiyear sales forecasts, so we go around this limitation by running the following regression:

log salesit − log Ft−hsalesit = cst + γ (log Ft−h log salesit − log Ft−ksalesit) + εiht

where we lump together different horizons of revisions h (as long as h is no less than 2 quarters), and k
is the time when the previous forecast of salesit is made. Standard errors are clustered by both firm and
time. ***, ** and * means statistically significant at the 1%, 5% and 10% confidence level.
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C Appendix Tables

Figure C.1: Average Profit Increase from Rationality: Adjutsment Costs (U.S. data.)

Panel A: Varying quadratic adjustment costs

Panel B: Varying fixed adjustment costs

Note: This figure combines the estimation of Table 5, various degree of adjustment
costs to simulate data for managers using rational forecast or distorted forecasts. It
then computes, for each realization of state variables in the Bellman problem (10), the
log-difference between rational and distorted profits. The figure shows the average log-
difference in these profits for the different values of quadratic adjustment costs ck in
Panel A, and for different values of fixed costs fk in Panel B.
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Figure C.2: Sensitivity analysis: θ and α (U.S. data)

Note: This figure computes the TFP losses from distorted forecasts for different calibra-
tion of α and θ. On the left panel, we fix α = 1/3 and let θ vary from .69 to .99. On
the right panel, we fix θ = .8 and let α vary from .1 to .7. For each calibrated value,
we estimate the moments in Panel A, Table 5 and then estimate the model following the
methodology developed in Section 3.2. We then compute the TFP losses using Equation
13.
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