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Abstract

This paper studies how private demand for public liquidity affects the indepen-

dence of a central bank vis-à-vis the fiscal authority. Whereas supplying liquidity

to the private sector creates degrees of freedom for both fiscal and monetary au-

thorities, we show that the authority that is most able to attract private liquidity

demand can ultimately impose its views to the other.
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1 Introduction

A central bank is independent if the fiscal authority does not stand in the way of

its objectives, foremost among them being price stability. In workhorse macroeconomic

models, a necessary condition for equilibrium, the“intertemporal budget constraint of the

government”, imposes strong restrictions on jointly feasible fiscal and monetary policies.

In particular, the central bank is independent only if the fiscal authority can commit to

a Ricardian policy, ensuring that the budget constraint holds for all paths of the price

level.1

This paper extends these workhorse models in two directions. We first posit that the

public sector has a unique ability to supply liquidity vehicles to the economy, thereby

generating resources above and beyond fiscal surpluses. This may relax the interdepen-

dence between fiscal and monetary policies that derives from a standard intertemporal

budget constraint. Second, rather than assuming that fiscal and monetary authorities

indefinitely commit to policy rules, we endow both authorities with objectives and in-

struments, and study the subgame-perfect outcome from their strategic interactions. Put

simply, we offer a formal game-theoretic analysis of Wallace’s “game of chicken”.

One purpose of these extensions is to assess central-bank independence in the current

context. Several observers (e.g., Blanchard, 2019) argue that the US government should

reap the benefits from interest rates below growth rates by issuing more debt at zero

fiscal and inflationary costs. Current attempts of the US executive branch at influencing

monetary policy are apparently not perceived by markets as pure noise Bianchi et al.

(2019). Overall, relative to a view of the world in which central-bank independence is

warranted by a Ricardian fiscal policy given the intertemporal budget constraint of the

government, the current context suggests on one hand that the budget constraint may be

“soft”, but that fiscal policy, on the other hand, is far from Ricardian. What is the net

implication for central-bank independence?

Our analysis generates the following insights. First, we offer a general formulation

of the condition under which public liquidity supply makes the monetary arithmetic

“pleasant”, in the sense that it relaxes fiscal and monetary interdependence and thus

significantly expands the set of jointly feasible policies. The condition is that the public

sector must be able to indefinitely rollover securities that are not backed by any fiscal

surplus, and that it must be able to do so at a sufficiently low cost relative to the return

on pure consumption claims. A simple but noteworthy insight is that it suffices that

only one type of public liabilities, e.g., central-bank reserves, can be rolled over at such

a low cost for the monetary arithmetic to be pleasant even if other liabilities, such as

1For the institutional aspect of central bank independence, see Cukierman (2008).
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government bonds, carry a higher yield. Under such pleasant monetary arithmetic, the

central bank retains significant degrees of freedom in determining the price level even

when fiscal policy is not Ricardian.

One could conclude from this latter remark that demand for public liquidity rein-

forces central-bank independence. The predictions from our strategic analysis are how-

ever gloomier. We find that the degree of “pleasantness” of the economy, broadly defined

as the wiggle room between fiscal and monetary policies, is actually not the essential de-

terminant of central-bank independence when both authorities are strategic. It is rather

its ability to mop up private liquidity demand before the fiscal authority does so with

the issuance of debt that warrants the independence of the central bank. We find indeed

that the authority that is the fastest at meeting private liquidity demand can force the

other to chicken out. There is fiscal consolidation and a stable price level if the monetary

authority preempts liquidity demand whereas there is fiscal expansion and inflation in

case the fiscal authority does so.

Overall, our explicit strategic approach offers useful insights into the question that

Sargent and Wallace (1981) raise in conclusion of their unpleasant arithmetic: “The

question is, Which authority moves first, the monetary authority or the fiscal authority?

In other words, Who imposes discipline on whom?” We contend that the authority who

moves first is the one that preempts private demand for liquidity. In times in which

liquidity demand is high and the central bank has the exclusive ability to satisfy it, then

it is de facto independent. When bonds and reserves are substitutes, the fiscal authority

may by contrast preempt the proceeds from supplying liquidity and spend them, thereby

stretching public finances and forcing the central bank to inflate away public debt.

The paper is organized as follows. For expositional clarity, we derive our main insights

in a very simple overlapping-generations model in which informational asymmetries in

the credit market create room for valuable public liquidity supply. Section 2 derives the

implications of a pleasant monetary arithmetic in this simple framework, and Section 3

solves for Wallace’s game of chicken in it. Section 4 is more abstract in nature. It offers

general and yet compact conditions under which monetary arithmetic is pleasant in a

broad class of models. It aims in particular at confirming that our main results do not

live or die on the overlapping-generations structure used to illustrate them.

Literature review. This paper is connected to the literature on the fiscal theory of the

price level starting with Leeper (1991), Sims (1994) and Woodford (1994, 1995, 2001),

and to its criticism (see Buiter, 2002; McCallum, 2001; Niepelt, 2004, among others). It

relates in particular to the literature investigating whether the fiscal theory of the price

level applies in non-Ricardian environments, starting with Bénassy (2008). More recent
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contributions include Bassetto and Cui (2018) and Farmer and Zabczyk (2019). Our

characterization of a pleasant monetary arithmetic builds in particular on Bassetto and

Cui (2018), who show that low interest rates on public debt prevents fiscal policy from

selecting a unique price level. Our main contribution relative to these papers is to go

beyond the determination of the set of feasible policies and predict the ones that actually

arise given the strategic interactions between fiscal and monetary authorities.

This paper is connected with the literature on bubbles (e.g. Tirole, 1985, among many

others) and, in particular, with models of bubbles where the economy is dynamically effi-

cient as in Farhi and Tirole (2012) or Martin and Ventura (2012). From this perspective,

our paper is connected to the literature linking monetary policy to bubbles including

Gali (2014). In particular, Asriyan et al. (2019) consider the competition between private

bubbles and a public one (“money”). In contrast, we consider the competition between

different public bubbles such as money or reserves and government bonds.

The idea that public debt is used as private liquidity goes back to at least Diamond

(1965) and was widely studied since them (see Woodford, 1990; Holmström and Tirole,

1998, among others). Krishnamurthy and Vissing-Jorgensen (2012) showed in the data

that public debt shared many of the properties of money.

Finally, this paper is also connected to the literature on central bank independence and

central bank’s balance sheet (Sims, 2003; Hall and Reis, 2015; Del Negro and Sims, 2015).

In contrast with this literature, we show that the central bank can loose its independence

not when it has to be recapitalized by the government, when in the opposite situation

where the central bank is forced to make transfers to the government.

2 Pleasant monetary arithmetic

This section shows how the demand for public liquidity relaxes the interdependence

of monetary and fiscal policies. To this purpose, we introduce an overlapping generation

model of entrepreneurs. We first study how liquidity demand shapes the set of price levels

that a central bank can target for a given fiscal policy. Second, we extend our analysis to

the presence of multiple public liabilities. In all these situations, we show that liquidity

demand expands the set of price levels that the central bank can target.

2.1 Setup

Let us consider an overlapping-generations model in which the trading of public lia-

bilities help overcome informational frictions in the credit market.

Time is discrete and indexed by t ∈ N. There is a single consumption good. The
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economy is populated by a public sector and two types of private agents, savers and

entrepreneurs. At each date, a unit mass of entrepreneurs and a unit mass of savers are

born. They live for two dates and value consumption only when old, at which time they

are risk-neutral. All agents use the same currency as a unit of account.

Savers. Young date-t savers receive a real endowment that they can store with a linear

return e−δ. Endowments are i.i.d. across savers of a given cohort. Their distribution has

a mean 1 + τ̄t, where τ̄t ≥ 0 is the lower bound of its support. Without loss of generality,

the minimum endowment τ̄t is strictly positive at date 1, zero otherwise.

Entrepreneurs. Young date-t entrepreneurs are endowed with a storage technology

with a random linear return. The (gross) return has expected value eρ, where ρ >

max{−δ; 0}, and its distribution has 0 in its support. Returns are perfectly correlated

across entrepreneurs of the same cohort. Entrepreneurs are competitive on the credit

market.

Public sector. The public sector sets transfers to the private sector and sets the price

levels.2 It starts out with an exogenous legacy nominal liability L > 0 due at date 1. We

generalize to a legacy nominal liability with multiple maturities in Appendix [TBD]. It

can issue one-period nominal bonds. Let Dt ≥ 0 denote the number of currency units due

at date t+ 1 and promised at date t.3 The date-t real price of debt is φt ≥ 0. We denote

by σt and τt the transfers from the young entrepreneurs and the young savers respectively

to the public sector. The date-t real fiscal surplus, denoted by st, is simply st = σt + τt.

One possible interpretation of this setting is that the public sector has issued long-term

debt in an unmodelled past (before date 0) and that L is the residual amount due at date

1. An alternative interpretation is that of a bailout decision following a major financial

crisis. Under this interpretation, the liabilities L are that of a distressed (unmodelled)

financial sector, and “default” therefore corresponds to an incomplete bailout.

Information structure. The public sector does not observe savers’ endowments, en-

trepreneurs’ realized returns, nor trades by private agents. There exists T ∈ N such that

if t does not belong to {1+k(T +1), k ≥ −1}, then savers born at date t perfectly observe

2We deliberately posit that the monetary authority can implement whichever price level it wants
without explicitly modelling a particular implementation. We believe that this is the right benchmark
to start with when studying an explicit model of strategic interactions between fiscal and monetary
authorities.

3The exclusion of public savings could be replaced by a no-Ponzi game condition without adding new
insights.
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the return realized by date-t entrepreneurs at date t+ 1. Otherwise, they do not observe

it.

That ρ > −δ implies that (risky) loans from savers to entrepreneurs unlock gains

from trades. Such a private credit market works seamlessly for the cohorts that do not

experience any informational asymmetries between lenders and borrowers. At dates that

belong to {1 + k(T + 1), k ≥ −1}, however, the credit market collapses as entrepreneurs

can always claim at the next date that their realized return is zero. Thus they cannot

pledge any future output to savers. Accordingly, we interpret the dates at which there

are no informational asymmetries between savers and entrepreneurs as “normal times,”

and the ones in which the credit market shuts down as “financial crises.”

Notice that the case T = 0 corresponds to an environment in which savers never

observe entrepreneurs’ realized returns. That is a low real rate environment, where the

public sector can raise debt at a gross real interest rate e−ρ. This environment is very

similar to dynamic inefficient ones studied for instance by Bassetto and Cui (2018).

2.2 Feasible policies

We define a feasible policy as a policy sequence (D, σ, τ, P )t∈N satisfying (i) solvency

of the public sector; (ii) market clearing; (iii) savers and entrepreneurs optimize; (iv)

savers are indifferent between public and private investment.

The last feasibility condition (iv) imposes that φt = eδ when t belongs to {1 + k(T +

1), k ≥ −1}, φt = e−ρ otherwise.

For all t ∈ N, the budget constraint of the public sector reads

1{t=1}
L

Pt
+
Dt−1

Pt
= σt + τt + φt

Dt

Pt+1

, (1)

where D−1 = 0 by convention and the dummy variable 1{t=1} equals 1 when t = 1 and 0

otherwise.

Note first that the public sector cannot raise taxes except at date 1: Given the distri-

bution of endowments and returns, savers and entrepreneurs can always claim that they

are penniless so as to avoid taxation. This implies in turn that for all t > 1,

φt
Dt

Pt+1

≥ Dt−1

Pt
. (2)

Unpleasant monetary arithmetic Let us first focus on the case where financial crises

are not frequent, that is T > δ/ρ. As a result, e−δ (eρ)T > 1 and so the public sector

cannot issue debt –except at date 0– because any (real) amount to be refinanced would

ultimately exceed savers’ unit aggregate endowment. Hence, D1 = 0 and the date-0 and
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date-1 budget constraints result in:

L

P1

=
σ0

φ0

+ σ1 + τ1, (3)

where σ0 ≤ 0 and σ1 ≤ 0 are transfers to young entrepreneurs and τ1 ∈ (0, τ̄1] is a tax on

young savers at date 1. In this case, the monetary arithmetic is unpleasant in the sense

that any reduction in fiscal surpluses at dates 0 and 1 should be associated with a higher

price level P1 (see Section 4 for a more formal definition).

Of particular interest to us is the fact that every feasible fiscal policy (σ0, σ1, τ1) is

associated with a unique feasible initial price level P1 determined by the budget constraint

of the public sector (3).

Pleasant monetary arithmetic Suppose now that T ≤ δ/ρ. Then, given a fiscal

policy (σ0, σ1, τ1), there exists a bubble with date-1 real value ω ∈ [0, 1]. To see this,

notice that any such a bubble can be perpetually refinanced since (eρ)T e−δ ≤ 1 and the

size of the bubble never exceeds disposable savings.4 For each ω ∈ [0, 1] there exists a

unique price level P1:

L

P1

=
σ0

φ0

+ σ1 + τ1 + ω. (4)

In this case, the monetary arithmetic is pleasant, in the sense that reductions in fiscal

surpluses at dates 0 and 1 (σ0 and σ1) can be financed by an increase in the bubble ω

and not necessarily by an adjustment in the price level P1.

Of particular interest to us is the fact that every feasible fiscal policy (σ0, σ1, τ1) is

associated multiple feasible initial price level P1.

To wrap up, if T > δ/ρ, then fiscal and monetary policies are strongly interdependent

in the sense that each feasible fiscal policy is associated with a unique initial price level.

As in the fiscal theory of the price level, real fiscal surpluses dictate the price level. In

particular, if a feasible fiscal policy features a lower surplus s0 (or s1) than another one,

then it must also come at a higher price level. Otherwise, fiscal and monetary policies

are less interdependent in the sense that a given feasible fiscal policy is associated with

an interval of feasible initial price levels.

4The bubble can be described using the public debt. In such a case, ω = φ1D1/P2. For an extended
discussion of the feasibility of such a bubble, see section 4.1.
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2.3 Feasible policies with multiple public liabilities

This subsection extends the analysis of feasible policies to the case where the public

sector may issue two types of liabilities, government debt and central-bank reserves and

where the central bank and the government have separate budget constraint as in Bassetto

and Messer (2013) or Hall and Reis (2015).

Now the public sector is comprised of two authorities, a fiscal and a monetary author-

ities. Both authorities can issue debt: Fiscal authority issues government bond denoted

by Bt ≥ 0 and monetary authority issues central-bank reserves denoted by Xt ≥ 0. Mon-

etary authority cannot operate transfers to the private sector but both authorities can

buyback a fraction of the exogenous nominal legacy liability L at date 0 at the prevailing

price φ0. We denote by LM and LF the debt buyback by the monetary and the fiscal

authority respectively. We denote by dt the transfer from the monetary authority to the

fiscal one. This transfer can be either positive (dividend) or negative (recapitalisation).

Budget constraints The budget constraints of the two authorities at dates 0 and 1

write:

0 = −d0 + φ0

(
X0

P1

− LM
P1

)
, (5)

X0

P1

= −d1 +
LM
P1

+ φ1
X1

P2

, (6)

0 = d0 + σ0 + φ0

(
B0

P1

− LF
P1

)
, (7)

B0

P1

+
L

P1

= d1 + τ1 + σ1 +
LF
P1

+ φ1
B1

P2

, (8)

(9)

Overall, the consolidated budget constraint is thus similar to equation (4):

L

P1

=
σ0

φ0

+ σ1 + τ1 + φ1

(
B1

P2

+
X1

P2

)
. (10)

When T > δ/ρ, then the last two terms are equal to zero and fiscal policy (σ0, σ1, τ1)

pins down a unique price level. Otherwise, for a given fiscal policy (σ0, σ1, τ1) and a given

date-1 real public debt b1 = φ1B1/P2 (unbacked by future real surpluses), there exists a

continuum of date-1 real value of central-bank reserves x1 =∈ [0, 1 − b1]. For each level
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of x1, there exists a unique price level P1 such that:

L

P1

=
σ0

φ0

+ σ1 + τ1 + b1 + x1. (11)

With two liabilities, for a given fiscal policy and for a given bubble attracted by the

fiscal authority, the feasible set of price levels is reduced to a singleton when the monetary

arithmetic is unpleasant and larger when the arithmetic is pleasant. In the latter case,

the larger the bubble attracted by the fiscal authority, the smaller the monetary policy

space.

With multiple maturities We extend in Appendix [TBD] these results to multiple

maturities of legacy debt. In such a context, Cochrane (2001) shows that the issuance

policy of public liability at date 0 matters for the exact price level path. We extend his

result and show that when the central bank can issue remunerated reserves, the central

bank can pin down the price level at dates 0 and 1.

The analysis thus far has focussed on determining how the“pleasantness”of the mone-

tary arithmetic shapes the set of feasible prices given fiscal policy. Section 2.3 in particular

has shown that when both branches of government supply liquidity vehicles to the private

sector, then not only fiscal surpluses, but also the real resources stemming from liquidity

yields on bonds and reserves, contribute to pin down the price level. These additional

resources expand the sets of feasible policies.

It would be incorrect to infer that such an expansion automatically reinforces central-

bank independence. Only a model that compares interactions between fiscal and mone-

tary authorities under varying degrees of “pleasantness” can deliver such a prediction.

3 Wallace’s game of chicken

This section offers such an explicit model of Wallace’s “game of chicken” to investi-

gate how the degree of pleasantness affects the interactions between fiscal and monetary

authorities.

In this model, the fiscal authority has a bias towards spending whereas the monetary

one has one towards price stability. The private sector has a demand for public assets,

both in the form of reserves or government bonds. We stack the deck in favor of central-

bank independence by assuming that the monetary authority “moves first” and imposes

a price level at the beginning of each period. We show yet that despite being at a

disadvantage, the fiscal authority can impose its policy views if it preempts a sufficiently

large fraction of public liquidity demand.
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3.1 Setup

This section adds strategic interactions to the OLG example described in subsection

2.3. We first specify the actions of the central bank and the government and the timing

and, then, we describe the preferences of the two authorities.

Actions and timing. At each date t ≥ 0,

• M first sets the date-t price level Pt.

• F taxes young savers an amount τt up to τ̄t.

• Savers issue (nominal) demands B̄t and X̄t for claims issued by F and M respec-

tively, where B̄t, X̄t ≥ 0.5 We adopt the convention that B̄−1 = X̄−1 = 0.

• F decides on a supply Bt ∈ [0, B̄t] and M on a supply Xt ∈ [0, X̄t] and they collect

their respective proceeds φtBt/Pt+1 and φtXt/Pt+1.

• One authority makes a take-it-or-leave-it offer to the other that consists in a real

transfer −σt to young date-t entrepreneurs and a reimbursement to the holders of

current liabilities. Current liabilities are the endogenous ones Bt−1 and Xt−1 at all

dates and the exogenous one L at date 1. At date-0, the offer also includes the full

or partial buyback of the exogenous ability L, either by the central bank (LM) or

by the fiscal authority (LF ). If the other authority turns down the offer then each

authority uses its proceeds as it sees fit.

Note that, which authority does the take-it-or-leave-it offer is immaterial. Further-

more, when the authorities decide on their supplies of assets and when the offer is turned

down, whether authorities move simultaneously or in a particular sequence is also imma-

terial. This implies that, except for the price level that is set by the central bank followed

by the choice of taxes by the fiscal authority, the timing of actions by the central bank

and the government is not critical for our results.

Preferences. Denoting qt,t′ the real rate of return for savers between t and t′. The

respective date-t objectives of F and M are:

UF
t = −

∑
t′≥t

qt,t′(σt′ − αF∆t′), (12)

UM
t = −

∑
t′≥t

qt,t′(| Pt′ − PM | +αM∆t′), (13)

5Whereas such demands are expressed in nominal or real terms is immaterial in our flexible price,
perfect-foresight environment.
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where αF , αM , PM > 0. The variable ∆t is equal to 1 in case of an outright default of

the public sector on any of its claims held by the private sector due at date t, and to 0

otherwise.

In words, each authority X ∈ {F ;M} incurs a cost αX if the public sector nomi-

nally defaults. The fiscal authority also incurs a cost from devoting public resources to

the repayment of these liabilities. It prefers to spend these resources with transfers to

young entrepreneurs. The monetary authority finds it costly to deviate from a given

target PM for the price level. To lift equilibrium indeterminacy, we also assume that

M , when indifferent among several actions, prefers the ones that maximize transfers to

entrepreneurs.

Why a separate central bank? For brevity, we simply posit that the public sector is

comprised of two distinct authorities with different objective functions. Yet a simple time-

inconsistency argument could micro-found the delegation of price-level determination to

a monetary authority. Suppose that the social welfare function puts more weight on

entrepreneurs than on savers, but that the government lacks commitment. In this case, if

private agents use nominal contracts, such a government would be tempted to inflate away

old entrepreneurs’ debts ex-post so as to transfer consumption to them from old savers.

Savers would anticipate this, and this would inefficiently shut down credit markets ex-

ante. Delegation to an entity with a mandate for a stable price level solves this problem.

Our setting is one in which this entity cannot fully commit to a path of price levels,

however, because it also cares about default. Another way of saying this is that the case

in which αM = 0 is that in which M can fully and credibly commit to set the price level

to PM , as setting Pt = PM at all dates clearly is a dominant strategy in this case.

3.2 Equilibrium concept

Let us introduce the definition of an equilibrium in our setting. This definition should

ensure that the sequence of private demands for public liabilities (B̄t and X̄t) solve the

savers’ problem, given the policies decided by the fiscal and the monetary authorities,

and, given these demands, the two authorities play a subgame perfect Nash equilibrium.

More precisely:

Definition 1. (Equilibrium) An equilibrium is a policy sequence (Bt, Xt, Pt, σt, τt)t≥0

and date-0 buybacks (LF , LM), a sequence of liquidity demand (B̄t, X̄t)t≥0, and a sequence

of price (φt)t≥0 such that all agents have perfect foresight and for all t ≥ 0,
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• Given a policy sequence and a sequence of price, the demand for liquidity is optimal:

φt
X̄t + B̄t

Pt+1

≤ 1, (14)

1{t=1}
L− LF − LM

Pt
+
X̄t−1 + B̄t−1

Pt
≤ −1{t=0}φt

LF + LM
Pt+1

+ φt
Xt +Bt

Pt+1

+ σt + τt,

(15)

and the price of public liabilities is such that savers are indifferent between public

and private investment:

φt = eδ if t ∈ {1 + k(T + 1), k ≥ −1}, φt = e−ρ otherwise. (16)

• Given the demand for liquidity (B̄t, X̄t)t≥0 and a sequence of price (φt)t≥0, the date-t

continuation of the policy sequence consitutes a subgame perfect Nash equilibrium

between F and M and satisfy:

σt ≤ 0 and τt ≤ τ̄t, (17)

Bt ≤ B̄t and Xt ≤ X̄t (18)

LF + LM ≤ L (19)

Condition (14) ensures that savers’ total unit endowment suffices to fund their real

demands for the public sector’s liabilities, condition (15) imposes that savers rationally

anticipate default along the equilibrium path. Finally, prices are such that savers are

indifferent between public and private investments imposing condition (16).

Inequality (17) reflects that entrepreneurs cannot be taxed and young savers can be

taxed only if the lower bound of their endowment is strictly positive. Condition (18)

ensures that the demand of public liabilities exceed the supply. Finally, condition (19)

limits the quantity of buyback at date 0.

In sum, an equilibrium is such that the flows between private and public sectors

are feasible and that F and M play a subgame perfect Nash equilibrium given savers’

demands for public liabilities.

When the monetary arithmetic is pleasant, the public sector can earn resources by

issuing unbacked reserves and bonds—“bubbles”. There are of course many feasible paths

for such bubbles, including a non-bubbly one, and we do not want to arbitrarily select a

particular pattern, nor do we want to arbitrarily enable the public sector to pick one. Our

formalization of the issuance process, whereby savers submit maximum quantities, and

our equilibrium requirement that these quantities and the supply of the public sector are
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merely sustainable, accordingly ensures that we do not arbitrarily rule out any possible

(deterministic) pattern of bonds and reserves issuance.

After date 1, in the absence of any tax revenue, the net aggregate real flow received

from savers by the public sector at date t,

φt
Xt +Bt

Pt+1

− Xt−1 +Bt−1

Pt
, (20)

is a bubble starting at date t. Strictly positive bubbles clearly exist if and only if the

arithmetic is pleasant (T ≤ δ/ρ).

The rest of the section characterizes such equilibria, considering in turn the cases of

pleasant and unpleasant monetary arithmetics. In order to ease exposition, we study the

limiting case in which both authorities prefer any outcome to sovereign default:

αF = αM = +∞. (21)

Section 3.5.1 shows that our insights carry over with finite default costs.

3.3 Unpleasant arithmetic

Suppose first that T > δ/ρ. We have seen that all public liabilities must be backed

by fiscal resources in this case. Given that there are no tax revenues at other dates than

1, any equilibrium must be such that for all t ≥ 1,

X̄t = B̄t = 0, (22)

and the equilibria are as follows.

Proposition 1. (Game of chicken under unpleasant arithmetic) Every equilib-

rium is default-free and has the following characteristics. Let (b, x) two positive numbers

such that b + x ≤ τ and (b, x) 6= (τ, 0). There exists a unique equilibrium associated

with (b, x). It is such that B̄0 = B0 = bP1 and X̄0 = X0 = xP1. Reciprocally, to every

equilibrium corresponds such a pair (b, x).

• At date 0, M sets P0 = PM and uses its resources φ0x to buyback all or part of L.

F uses its resource φ0b to subsidize young entrepreneurs.

• At date 1, M sets P1 = max{PM ;L/(τ − b)}. The public resources τ serve to pay

back b, x and (L/P1 − x)+. There are no residual resources available for transfers

to young entrepreneurs if P1 > PM .
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• At all dates t ≥ 2, the price level is PM and there are no transfers between the public

and the private sector.

If (b, x) = (τ, 0), then F must buy back the entire liability L at date 0, and P1 can reach

any level above max{PM ;L/τ}.

Proof. See Appendix A.1.

The fiscal authority seeks to induce the largest possible date-1 price level so as to

reduce the real value of L and thus devote the maximum amount of fiscal resources to

subsidizing young entrepreneurs. The monetary authority by contrast prioritizes price

stability. Accordingly, both supply as much liquidity as possible at date 0. The latter

authority uses the proceeds to buyback L whereas the former spends them. The case in

which (b, x) = (τ, 0) is degenerate. When F can borrow against its entire future fiscal

resources, it must buyback L entirely to avoid default. The real cost of this buyback

depends on savers’ (self-justified) anticipation of the date-1 price level.

Strategic fiscal irresponsibility. In sum, F can make a strategic use of fiscal irre-

sponsibility that forces M to accommodate at lower debt levels L than τPM , the debt

capacity of the public sector at the target price level PM . By spending its entire ini-

tial resources φ0b on young entrepreneurs rather than on reimbursing L, F ensures that

the date-1 outstanding debt is sufficiently large relative to the date-1 resources of the

public sector that M has no other option but accommodating with P1 > PM as soon

as L > [τ − b]PM ≤ τPM . Such strategic fiscal irresponsibility is all the more effective

because b is a large fraction of τ .

The authority that preempts liquidity imposes its views. As a result, across

all equilibria (b, x), the utility of M is (weakly) decreasing in b whereas that of F is

(weakly) increasing in it. Similarly, for a fixed total public liquidity supply at date 0

φ0(b+ x) ≤ φ0τ , each authority prefers the equilibrium that grants her the largest share

of that total date-0 liquidity. Another way of saying this is that if the issuance mechanism

was such that one authority could move first and make a take-it-or-leave it offer to date-0

savers, then it would absorb the entire (unit) date-0 savings. In sum, the authority that

preempts liquidity can impose its views.

3.4 Pleasant arithmetic

We now characterize equilibria when the monetary arithmetic is pleasant (T ≤ δ/ρ).

We show that both insights above—i) F is strategically fiscally irresponsible, and ii) the
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authority that preempts liquidity imposes its views—hold in exactly the same way as

when the arithmetic is unpleasant. The only difference with the unpleasant case is that

the public sector now has the ability to collect additional resources from the issuance of

unbacked securities. How F and M strategically use these resources remains however

unchanged.

For ease of exposition only, we focus on no fiscal resources by assuming τ = 0. In

addition, we consider only equilibria such that there is a demand for reserves at each

date: For all t ≥ 0, X̄t > 0. We deem such equilibria “liquid”. Section 3.5.2 shows that

our insights still hold over all possible equilibria.

Proposition 2. (Characterization of liquid equilibria) Let Λ = (bt, xt)t≥−1 a

sequence of positive numbers such that b−1 = x−1 = 0 and for all t ≥ 0,

xt > 0, (23)

bt−1 + xt−1 ≤ φt(bt + xt) ≤ 1. (24)

There exists a unique liquid equilibrium associated with Λ. It is such that B̄t = Bt = btPt+1

and X̄t = Xt = xtPt+1. Reciprocally, to every liquid equilibrium corresponds a sequence

Λ that satisfies (24).

Every liquid equilibrium is default-free and has the following characteristics:

• At date 0, M sets P0 = PM and uses its resources φ0x0 to buyback L whereas F

uses its resources φ0b0 to subsidize young entrepreneurs.

• At date 1, M sets P1 = max{PM ;L/[φ1(b1 + x1) − b0]}. The public resources

φ1(b1 + x1) serve to pay back b0, x0, and (L/P1 − x0)+.

• At all dates t ≥ 2, the price level is PM and the net resources (20) are transferred

to current young entrepreneurs.

Proof. See Appendix A.2.

Note that the features of the equilibria at dates 0 and 1 are verbatim that in the case

of unpleasant monetary arithmetic, up to the only difference that the fiscal resource τ is

replaced by the equilibrium surplus from supplying liquidity at date 1, φ1(b1 + x1). The

public sector collects resources from issuing “bubbles” at possibly any date whereas it can

only issue date-0 securities backed by date-1 taxes when the arithmetic is unpleasant.

The multiplicity of possible bubbly paths drives that of liquid equilibria:
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Multiplicity is only due to the multiplicity of bubble patterns. The public

sector obtains resources by issuing (deterministic) bubbles, and there are clearly many

ways in which such bubbles can arise and shrink over time given a pleasant arithmetic.

Proposition 2 states that there is a one-to-one mapping between the bubble patterns such

that xt > 0 and the set of liquid equilibria. Thus one can index the set of liquid equilibria

with their associated bubble patterns Λ.

Strategic fiscal irresponsibility. For a given Λ, if L > L̄ = φ1(b1 + x1)PM , then the

public sector has no choice but inflating away L at date 0 and setting P1 > PM . It is

still the case that F can make a strategic use of fiscal irresponsibility that forces M to

accommodate at lower debt levels than L̄. By spending its entire initial resources φ0b0

on young entrepreneurs rather than on reimbursing L, F ensures that M has no other

option but accommodating with P1 > PM as soon as L > [φ1(b1 +x1)− b0]PM ≤ L̄. Such

strategic fiscal irresponsibility is all the more effective because b0 is a large fraction of

φ1(b1 + x1).

The authority that preempts liquidity imposes its views. This can be formally

stated as follows when the monetary arithmetic is pleasant. Let E((bt + xt)t≥1) denote

the set of liquid equilibria that share the same value of aggregate public liquidity supply

bt + xt from date 1 on.

Proposition 3. (Fiscal and monetary preferences over liquidity distribution)

Over E((bt + xt)t≥1), the payoff of M is (weakly) decreasing in b0 whereas that of F is

(weakly) increasing in it.

Proof. In any equilibrium, M sets the price at PM at all dates but 1 at which P1 =

max{PM ;L/[φ1(b1 + x1) − b0]}. F can spend φ0b0 at date 0 and, viewed from date 0,

φ0 | φ1(b1 +x1)− b0−L/P1 |+ at date 1. This implies the claimed variations with respect

to b0 for their respective preferences.

Proposition 3 formalizes the idea that the authority that preempts the resources from

supplying public liquidity can impose its policy views—more spending for F , a stable

price level for M .

A straightforward corollary is that if two equilibria are such that the aggregate inflow

streams (bt+xt)t≥0 are ranked, then M may well be better off in the one with the smallest

aggregate inflows if it attracts a larger fraction of them at date 0.

These results lead overall to conclude that even though it may expand the set of

feasible fiscal and monetary policies, public liquidity demand does not strengthen the

independence of the central bank. This would be the case only if M was the dominant
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supplier of liquidity in the following sense: If, for some reason that is beyond the scope

of our model, savers were coordinating only on equilibria such that b0 is sufficiently small

that fiscal irresponsibility does not pay off. The current situation in many countries

seems by contrast better described by equilibria in which both F and M are able to extract

significant convenience yields from their securities.

3.5 Extensions

Let us now extend our results to situations where the government can default – i.e.

the central bank and the government have only finite default costs – and to situations

where the equilibrium can be illiquid – i.e. situations where the demand for liquid assets

can be 0 in some periods.

3.5.1 Sovereign default

Whereas the assumption of infinite costs of default simplified the exposition, the

important insights carry over when these costs are finite. Suppose αM , αF > 0. For

brevity and realism, we restrict the analysis to the case in which αF > 1. As will be

clear below, this implies that M is always the authority that pulls the trigger on default

by refusing arbitrarily large levels of inflation. The liquid equilibria have the very same

structure as in the limiting case of infinite default costs, the only difference being that

strategic fiscal irresponsibility is less effective at leading M to chicken out.

Proposition 4. (Liquid equilibria with finite default costs) There is a one-to-

one mapping between the set of liquid equilibria and that of the sequences Λ that satisfy

(23),(24), and L ≤ φ1(b1 + x1)(PM +αM). The equilibria are as described in Proposition

2 except when [φ1(b1 + x1) − b0](PM + αM) < L ≤ φ1(b1 + x1)(PM + αM). In this case

the equilibrium is such that M accommodates as much as possible: P1 = PM + αM , and

F does not spend all of φ0b0 at date 0, but uses part of it to extinguish L instead.

Proof. See Appendix A.2.

Default as an alternative to hyperinflation. The fiscal authority’s cost from sovereign

default αF plays no role in equilibrium determination. This owes to the assumption that

it is larger than the maximum gross resources that F could generate by defaulting at any

date (αF > 1). This implies that default in equilibrium is always triggered by M , which

does so when all the current real resources of the public sector do not suffice to repay

the outstanding liabilities without a rate of inflation larger than αM/PM . In other words,

default in this economy is a strategic decision of the central bank, who prefers this option

to the always available one of massive money printing.
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The smaller αM , the less M chickens out. Unsurprisingly, the strategy of fiscal

irresponsibility of F is less effective, the less M cares about default. The new equilibrium

feature introduced by finite default costs is that M is not willing to generate whichever

date-0 inflation averts sovereign default. Its indifference point between inflation and

outright default is at the price level P1 = PM + αM . Anticipating this, F cannot spend

its entire initial surplus φ0b0 when L is sufficiently large. It must instead reimburse some

of L at date 0 so as to ensure that M is exactly at its indifference point at date 1. In

particular, Proposition 4 confirms that strategic fiscal irresponsibility is totally ineffective

if αM = 0.

3.5.2 Illiquid equilibria

Our restriction to liquid equilibria simplifies the exposition but is admittedly arbitrary.

Here we sketch how lifting it affects the analysis. Appendix A.2 develops the full-fledged

analysis. Unlike under the restriction to liquid equilibria, there may now be several

equilibria associated with a given sequence Λ = (bt, xt)t≥−1 as soon as the real demand

for reserves xt is equal to 0 for some dates t ≥ 0.6 Let Λ = (bt, xt)t≥−1 a sequence of

positive numbers such that b−1 = x−1 = 0 and for all t ≥ 0,

bt−1 + xt−1 ≤ φt(bt + xt) ≤ 1. (25)

We also denote λt the net aggregate real flow (20) received from savers at date t. The

equilibria associated with Λ have the following features:

• If x0 = b0 = x1 = b1 = 0 then the public sector defaults at date 1 (but not

afterwards). Otherwise equilibria are default-free and:

• If λt = 0 for some t > 1, then for some histories of the game up to t, any price

Pt ≥ PM is an equilibrium outcome. There are also histories, detailed in Appendix

A.2, such that M can impose Pt = PM .

• If x0 = λ1 = 0, then any price above max{PM ;L/b0} is an equilibrium outcome;

• Otherwise all equilibria associated with Λ are identical at date t, at which date they

have the same features as liquid equilibria.

Two new features arise when the demand for reserves may dry up at any date. First, if

the public sector is completely illiquid before date 1, then it has no choice but defaulting

at date 0. Second and more interestingly, the possibility that M does not receive fresh

6This is the exact equivalent under pleasant arithmetic of the situation in which (b, x) = (τ, 0) under
an unpleasant one.
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liquidity at every given date creates room for equilibria with higher price levels than

PM . The important bottom line though is that even when Λ is associated with multiple

equilibria, the comparative statics with respect to b0 in Proposition 3 still apply.

4 General conditions for pleasant arithmetic

In this section, we provide general conditions under which the monetary arithmetic is

pleasant. To this purpose, we first introduce a general setting. In this setting, we define

and characterize pleasant monetary arithmetic and we show how this affects the set of

feasible price levels that the monetary authority can target. We finally extend our results

to multiple public liabilities – government debt and central bank reserves.

4.1 General setup

A policy (P, s) is a pair of sequences of real numbers P = (Pt)t∈N and s = (st)t∈N.

The sequence P represents the public sector’s choice of price levels, and s stands for

the sequence of real fiscal surpluses. We seek to identify the set of feasible policies of

an economy, that is, the policies (P, s) that are compatible with market clearing and

optimization by the private sector. We formally proceed as follows. Let D−1 > 0. For

every t ∈ N, let φt be a mapping from R+ into R+ \ {0}, φ̄t ≤ φt a mapping from R+ into

itself, and St a non-empty subset of R.

Definition 2. (Feasible policy) Given
(
D−1,

(
St, φt, φ̄t

)
t∈N

)
, a policy (P, s) is feasible

if

(i) For all t ∈ N, Pt > 0 and st ∈ St.

(ii) There exists a sequence of real numbers (Dt)t∈N that satisfies for all t ∈ N:

Dt−1

Pt
= st + φt

(
Dt

Pt+1

)
Dt

Pt+1

, (26)

lim
τ→∞

(
τ∏
i=t

φ̄i

(
Di

Pi+1

))
Dτ

Pτ+1

= 0. (27)

We denote by F the set of such feasible policies.

The above abstract definition subsumes feasible fiscal and monetary policies in many

models. The parameter D−1 represents nominal public liabilities inherited from an un-

modelled past and due at date 0 – as L−1 in Sections 2 and 3. For every t > 0, Dt

corresponds to a nominal liability—a number of currency units due at date t + 1 and
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issued at date t by the public sector. Conditions (26) and (27) are reduced forms for the

restrictions that optimization by the private sector and market clearing impose on feasible

fiscal policies s and monetary policies P in a large class of standard economic models.

Condition (26) is the date-t budget constraint of the public sector given the pricing φt of

public debt, and (27) is a transversality condition.

In other words, our approach consists in summarizing an economy with the two in-

gredients that matter for the determination of feasible fiscal and monetary policies, the

pricing of public debt (φt)t∈N and the intertemporal rates of substitution in the transver-

sality condition (φ̄t)t∈N. If they are equal then public debt does not offer liquidity services.

OLG example. In this case, φt(b) = min{e−ρ; 1/b} when t is not a multiple of T + 1

and φt(b) = min{eδ; 1/b} otherwise. The function φ̄t can be normalized to 0 so that

(27) always holds given that optimization by short-lived agents requires no transversality

condition. The set St is (−∞, λ] for t = 0 and (−∞, 0] afterwards.

Debt in the utility function Consider an economy populated by a public sector

and a private sector comprised of a representative agent. The agent receives Y > 0

consumption units at each date t ∈ N. She derives utility out of consumption and real

holdings of public liabilities. At each date t ∈ N, the public sector sets the price level

Pt, raises a real lump-sum tax st, and issues a nominal claim of Bt currency units due at

t+ 1. It starts out with an exogenous legacy nominal liability D−1 > 0 due at date 0.

Denoting qt the date-t real price of public bonds, the agent selects a consumption

stream (Ct)t∈N and bond holdings (Ht)t∈N that solve for some β ∈ (0, 1)

max
(Ct,Ht)t∈N

∞∑
t=0

βt
(
u(Ct) + v

(
Ht

Pt+1

))
,

s.t. ∀t ∈ N, Yt − st +
Ht−1

Pt
= qt

Ht

Pt+1

+ Ct. (28)

In addition, goods and bonds market clearing implies that for all t,

Ct = Y and Ht = Dt. (29)

Standard restrictions on u and v (e.g., Kamihigashi, 2003) imply that (Ct, Ht)t∈N solves

(28) and (29) if and only if it satisfies two conditions, a local one (Euler equation):

qt = β +
v′
(

Dt
Pt+1

)
u′(Y )

, (30)
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and a terminal one (transversality condition):

lim
k→∞

βk
Dt+k

Pt+k+1

= 0. (31)

In this case, φt(b) = qt = β +
v′
(

Dt
Pt+1

)
u′(Y )

and φ̄t = β. The set St is R for any t ≥ 0.

We impose in the remainder of the paper the following restrictions.

Assumption 1. For every t ∈ N, the function φt is continuously decreasing, the function

b 7→ φ̄t(b)/φt(b) is increasing and the function b 7→ bφt(b) is strictly increasing.

The first item of Assumption 1 imposes that, at any date, the price φt(b) (weakly)

decreases with respect to the real level of the newly issued debt b. The second item

imposes that this decrease dominates the potential increase of φ̄(.).7 Finally, the third

item imposes that even though the price of debt decreases with the quantity of newly

issued debt, the real amount of fiscal resources increases with it. Note that the OLG and

the debt-in-the-utility-function examples satisfy these restrictions.

4.2 Pleasant monetary arithmetic: Definition and characteriza-

tion

We now investigate the interdependence between fiscal and monetary policy in the

general setting that we have introduced. To this purpose, we first formalize the notion

of a tradeoff between these two policies — i.e. modifying one side of the policy, either

the fiscal or the monetary one, necessarily leads to also modifying the other. We then

connect the presence of tradeoffs to the price of public debt and to whether a rollover of

debt is possible.

Fiscal-monetary tradeoff A feasible policy features a fiscal-monetary tradeoff—simply

a “tradeoff” henceforth— if and only if there exists no other feasible policy with both

smaller surpluses and initial price level. Formally,

Definition 3. (Tradeoff) A feasible policy (P, s) features a tradeoff if and only if for

any policy (P ′, s′) ∈ F ,

P ′0 ≤ P0 and s′ ≤ s→ P ′0 = P0 and s′ = s. (32)

7As we will see soon, this means that the convenience yield decreases with the level of newly issued
debt.
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Starting from a policy that features a tradeoff, a monetary authority averse to sovereign

default would have to accommodate with inflation if the fiscal one were willing to reduce

taxes, and vice versa. This is the type of situations deemed “game of chicken” by Wal-

lace. The following proposition establishes an equivalence between the presence of a

fiscal-monetary tradeoff and the extent to which fiscal policy uniquely pins down the

price level.

Proposition 5. (A tradeoff implies fiscal determination of the price level)

Let (P, s) ∈ F and Ps = {P ′0 | (P ′, s) ∈ F}.

(i) Ps is an interval;

(ii) Ps is a singleton if and only if every policy (P ′, s) ∈ F features a tradeoff.

Proof. See Appendix A.3.

Proposition 5 first shows that the set of feasible initial price levels associated with a

given path of surpluses is an interval. This owes to the monotonicity posited by Assump-

tion 1. It then establishes the equivalence between the existence of a tradeoff for every

feasible policy (P ′, s) and the fact that s fully determines the initial price level.

Pleasant monetary arithmetic. Based on our definition of a tradeoff, we now offer

a more global concept of fiscal and monetary interdependence.

Definition 4. (Pleasant monetary arithmetic) Given (St, φt, φ̄t)t∈N, the monetary

arithmetic is unpleasant if for all D−1 > 0, every feasible policy features a tradeoff.

Otherwise, the monetary arithmetic is pleasant.

In other words, the monetary arithmetic is unpleasant when any feasible path for

public finances features a tradeoff. The arithmetic is conversely pleasant as soon as there

exists an initial value of legacy liabilities D−1 > 0 for which fiscal and monetary policy

are not interdependent this way.

Our characterization of situations of pleasant monetary arithmetic requires the intro-

duction of debt rollovers. Before defining a rollover, let us define a convenience yield.

Definition 5. (Convenience yield) We deem δt(b) the date-t convenience yield as-

sociated with real debt b > 0 defined as

δt(b) =

log(φt(b))− log(φ̄t(b)) if φ̄t(b) > 0,

1 otherwise.
(33)
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We can now define a rollover of debt.

Definition 6. (Rollover) A rollover is a sequence (bt)t∈N ∈ (0,+∞)N such that for all

t ∈ N,

bt = bt+1φt(bt+1), (34)

and such that
∑

t∈N δt(bt) diverges.

The existence of such a rollover is a sufficient and necessary condition for the monetary

arithmetic to be pleasant.

Proposition 6. (Characterization of pleasant monetary arithmetic) The mon-

etary arithmetic is pleasant if and only if there exists a rollover.

Proof. See Appendix A.4.

Put simply, if public liabilities can be rolled over at a cost that is sufficiently low

relative to the long-term opportunity cost of capital of the private sector, then the public

sector can extract the resulting surplus in order to gain degrees of freedom and relax the

interdependence between fiscal and monetary policies.

We actually show in the proof of Proposition 6 that if there exists such a rollover,

then the set of initial prices associated with zero primary surpluses (s = 0), P0, is not a

singleton regardless of the initial level of debt D−1.

Proposition 7. (Fiscal determination at the minimum price level) Suppose

that there exists b̃ > 0 such that there exists no rollover with b0 ≥ b̃. Then, given D−1,

(i) If s′ < s, then inf Ps′ > inf Ps.

(i) For any p > 0, there exists a level of surpluses s such that inf Ps = p.

Proof. See Appendix A.5.

Many observers hold the view that fiscal considerations matter for monetary policy

only in times of stretched public finances, or, that the fiscal theory of the price level is

practically relevant only during fiscal crises. Proposition 7 translates this in our formal

setting.

The first part of the proposition states that even when surpluses do not dictate the

price level, there is still a point at which the tradeoff between a lower price level and

lower surpluses kicks in again.
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Proposition 7 also shows that for any level p, there always exists a level of surpluses

leading prices to be above p. In this sense the independence of the central bank is unclear

as long as the government can choose the stream of surpluses.

It is instructive to connect the results in Propositions 6 and 7 to the OLG and the

debt-in-the-utility examples.

OLG example. In this case, φ̄t = 0 for all t and so the monetary arithmetic is pleasant

if and only if there exists a rollover. As established in Section 2, this is the case if and

only if T ≤ δ/ρ.

Regarding Proposition 7, it is indeed the case that rollovers are not possible starting

from a real value above b̃ = 1. As stated in the Proposition, the smallest feasible price

level B−1/(s0 + 1) is strictly decreasing in s.

DIU example. According to the formalism of subsection 4.1, φ̄t is a constant equal to

β, and φt is given by the right-hand side of (30). For all t ∈ N, St = R.

We will study here the case in which

v(h) = αu′(Y )
h1−γ

1− γ
, (35)

where α > 0 and γ ∈ (0, 1). The existence of a rollover is not an issue in this case since

bφt(b) ≡ Ψ(b) = βb+ αb1−γ (36)

is a bijection over R+. In fact, it is possible to construct a rollover starting from any initial

value. The question is then whether there exists one with a diverging sum of convenience

yields. We have

∀t ∈ N,δt(b) = log

(
1 +

αb−γ

β

)
. (37)

Let

b∗ =

(
α

1− β

) 1
γ

(38)

the unique non-zero fixed point of Ψ. We show in Appendix YYY that a rollover has a

diverging sum of convenience yields if and only if b0 ∈ (0, b∗]. For such values of b0 the

rollover converges to a finite value, whereas for b0 > b∗ it tends to +∞ so quickly that

the convenience yields decrease sufficiently fast for
∑
δt to converge .
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This implies first that there exists a rollover with a diverging sum of convenience

yields, and so that the monetary arithmetic is pleasant. This also implies that for a given

surplus stream of the form s =
(
1{t=0}x

)
t∈N for some x > 0, we have

inf Ps =
D−1

x+ b∗
, (39)

which decreases in x and in the preference for liquidity α, and increases in the elasticity

of the convenience yield γ: the interdependence between fiscal and monetary policy is

thus tighter when the demand for public liquidity is more elastic.

Note that in the extreme case where γ = 1, that is v(h) = α log h, where α > 0, then,

(28), (30) and (31) lead to

B−1

P0

=
∑
t∈N

βtst +
α

u′(Y )(1− β)
. (40)

This means that there is a strong interdependence between monetary and fiscal policies:

as in the fiscal theory of the price level, the present value of future surpluses uniquely

pins down the price level, but at a lower level compared with the fiscal theory because

of the convenience yield. One can observe that a large value to hold public liabilities (as

measured by the parameter α) leads to a lower price level P0 through equation (40).

4.3 Extension to multiple public liabilities

This subsection extends the analysis of feasible policies to the case where the public

sector may issue two types of liabilities, government debt and central-bank reserves and

where the central bank and the government have separate budget constraint as in Bassetto

and Messer (2013) or Hall and Reis (2015).

Feasible policies with central-bank reserves We now assume that the public sector

includes a monetary authority that can issue reserves. We denote by Xt ≥ 0 the amount

of reserves issued at date t and due at date t + 1 and by φXt the real price of reserves.8

We suppose that φXt and the price of bonds φt may a priori depend on the real holdings

of both bonds and reserves by the private sector.

The monetary authority may use the proceeds from issuing reserves to trade govern-

ment bonds or/and transfer all or part of them to the government. Let DB
t denote the

date-t debt holding of the central bank, and dt denote the date-t real remittances to the

8For expositional simplicity and symmetry, we model central-bank reserves as one-period claims akin
to government bonds. Introducing reserves with indefinite maturity as they are in practice would not
add any insight.
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government. These transfers can be positive (dividends) or negative (recapitalization).

Definition 7. (Feasible extended policy) Given
(
D−1, D

B
−1, X−1, (St, φt, φ

X
t , φ̄t)t∈N

)
,

an extended policy (P, s, d) is feasible if

(i) For all t ∈ N, Pt > 0 and st ∈ St.

(ii) There exists a triplet of sequences of positive real numbers (Dt, Xt, D
B
t )t∈N that

satisfies for all t ∈ N:

Dt−1

Pt
= st + dt + φt((Dt −DB

t )/Pt+1, Xt/Pt+1)
Dt

Pt+1

, (41)

φt((Dt −DB
t )/Pt+1, Xt/Pt+1)

DB
t

Pt+1

+
Xt−1

Pt
+ dt =

DB
t−1

Pt
+ φXt ((Dt −DB

t )/Pt+1, Xt/Pt+1)
Xt

Pt+1

, (42)

lim
τ→∞

(
τ∏
i=t

φ̄i((Di −DB
i +Xi)/Pi+1)

)
Dτ −DB

τ +Xτ

Pτ+1

= 0, (43)

DB
t ≤ Dt. (44)

We denote by FX the set of such feasible extended policies.

Equation (41) is simply the budget constraint of the government (26) where remit-

tances from the central bank are added to surpluses. Equation (42) is the budget con-

straint of the central bank. Equation (43) is the terminal condition. Finally, equation

(44) imposes that the bonds’ holding of the central bank be lower than the total stock of

government bonds.

For a given stream of surpluses s, we denote by PXs the set of initial price levels that

belong to a feasible extended policy: PXs = {P0|(P, s, d) ∈ FX}. We now study how the

availability of such extended policies expands the set of circumstances in which monetary

arithmetic is pleasant. We study in turn the polar cases in which by contrast only reserves

carry a convenience yield, and in which bonds and reserves are perfect substitutes.

When bonds and reserves are imperfect substitutes Suppose that reserves are

the only asset providing liquidity services leading to a disconnect between the price of

reserves and that of bonds. For simplicity, we assume that φt = φ̄t does not depend on

the quantity of public liabilities and that φXt only depends on real holdings of reserves.

More precisely, at any date t:

φt = φ̄t and φXt (Xt/Pt+1) ≥ φt with φXt (0) > φt. (45)
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In this context, it is useful to extend our definitions of rollover and convenience yield to

central bank’s reserves. A rollover for reserves is a sequence (xt)t∈N ∈ (0,+∞)N such

that for all t ∈ N,

xt = xt+1φ
X
t (xt+1). (46)

We deem δXt (x) the date-t convenience yield associated with real reserves x > 0 defined

as

δXt (x) =

log(φXt (x))− log(φ̄t) if φ̄t > 0,

1 otherwise.
(47)

Importantly, a rollover for reserves is expressed in real terms. In nominal terms, reserves

can always be rolled over, as reserves are always reimbursed using reserves.

Proposition 8. (Central bank’s issuance of reserves may relax the fiscal-

monetary tradeoff) Suppose X−1 = DB
−1. If there exists a rollover of reserves {xt}t≥0

such that
∑

t∈N δ
X
t (xt) diverges, then for any feasible policy (P, s), there exists a feasible

extended policy (P ′, s′, d) with P0 < P ′0 and s ≤ s′.

Proof. See Appendix A.6.

When reserves can be rolled-over then the issuance of reserves generates additional

real revenue for the central bank. The central bank can issue such liabilities either through

monetary financing of the deficit or through open market operations. In any case, this

additional revenue will be ultimately rebated to the government leading to either lower

price level or lower surpluses. The existence of a convenience yield on reserves thus

potentially relaxes the interdependence between the two authorities.

However, the conclusions of Section 3 still remain: the additional resources obtained

by the public sector through the issuance of reserves may not necessarily ensure the

independence of the central bank. The government can force the central bank to transfer

these additional resources and then constraint the central bank to give up on the price

stability objective.

Remark. Proposition 8 contrasts with the unpleasant fiscal arithmetic described by Sar-

gent and Wallace (1981). In their paper, an additional deficit necessarily leads to higher

price level. Indeed, when the government increases deficit, the only feasible monetary

policy is to raise the stock of money eventually collecting higher seigneurage revenues to

balance the government budget. In their paper, a quantity theory demand for money with

constant income velocity links the quantity of money and the price level and therefore
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larger deficit causes higher prices. Because, we do not assume such a link here, the cen-

tral bank can increase reserves, generating additional revenues, without triggering higher

price level.

When bonds and reserves are perfect substitutes Let us now turn to the case

where bonds and reserves are perfect substitutes. This happens when they share the

same price that depends on the total public liability held by the private sector, D̃t =

Dt −DB
t +Xt, that is:

For all t ∈ N, φXt (D̃t) = φt(D̃t). (48)

Note that this corresponds to a situation where the ZLB binds or, more generally, a

situation where the central bank is already supplying a large amount of reserves.

The budget constraint of the central bank and that of the government can then be

consolidated without loss of generality:

D̃t−1

Pt
= st + φt(D̃t/Pt+1)

D̃t

Pt+1

. (49)

It follows that only the path of aggregate public liabilities held by the private sector

matters for price-level determination.

Proposition 9. (Central bank’s balance sheet irrelevance for price determi-

nation) If reserves and bonds are perfect substitutes, then for a given level of public

liability held by the private sector D̃−1 and fiscal surpluses s, the set of initial feasible

prices is unaffected by the central bank’s balance-sheet structure: Ps = PXs .

Proof. See Appendix A.7.

Proposition 9 shows that, given surpluses, the set of initial feasible prices is unaffected

by the balance-sheet tools of the central bank. In particular, the path of remittances d is

irrelevant for the determination of the price level because the government can adjust the

issuance of debt such as to exactly offset the newly issued reserves, letting the quantity

of debt held by the public unchanged. Therefore, when reserves and bonds are perfect

substitute, monetary financing of the deficit has no impact on the price level. Note that

this is true regardless of whether the monetary arithmetic is pleasant or not.

In addition, open-market operations at any date (defined here as the case Xt = DB
t )

do not change the public liability D̃ and do not affect the set of feasible policies (P, s).

This result echoes the well-known irrelevance result of open market operations (Wallace,

1981; Chamley and Polemarchakis, 1984). Indeed, if reserves and government bonds
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do not provide different liquidity services then open market operations do not alter the

aggregate budget constraint of the public sector vis-à-vis the private sector.

An implication of Proposition 9 is that when a rollover is impossible (see Proposition

6), then the only initial price level that is feasible is the singleton Ps that only depends on

the legacy debt D̃−1 and the stream of surpluses s but is completely independent of the

amount of reserves and of central bank’s debts holding. In a similar environment, Benigno

(2017) establishes the related result that if the government passively passes through the

remittances to the public (in our context, if s = −d), the central bank can pin down the

price level because it de facto decides on the stream of fiscal surpluses.
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Appendix

A Proofs

A.1 Proof of Proposition 1

After date 2. F and M can only issue securities at date 0 that are backed by the date-1

fiscal resources τ . Thus there is no action after date 2 other than M setting the price

level at PM .

No default in equilibrium. Suppose an equilibrium is such that the public sector

defaults at date 1. Default should be total given the fixed cost of doing so, and thus

liquidity demand such that X̄0 = B̄0 = 0. But in this case M would set P1 = L/τ and

avoid default, a contradiction.

Equilibria when (b, x) 6= (τ, 0). We show that there is exactly one equilibrium associ-

ated with such (b, x). We denote P̄1 the savers’ anticipation of the date-1 price at date

0, X and B the respective (nominal) supply of liquidity by M and F at date 0, and LM

and LF the respective (nominal) shares of L that they prepay at date 0. An equilibrium

is such that

X̄0 = xP̄1, (50)

B̄0 = bP̄1, (51)

0 ≤ LM ≤ X ≤ X̄0, (52)

0 ≤ LF ≤ B ≤ B̄0, (53)

0 ≤ LF + LM ≤ L. (54)

Moving first at date 1, M sets P1 at the largest of two values, either PM or the smallest

P1 that ensures solvency:

P1τ ≥ L− LF − LM +X +B. (55)

Rationally anticipating this at date 0, F maximizes B − LF by setting B = B̄0 and

LF = 0, whereas M sets X − LM = 0. Thus

P1 = max

{
PM ;

L+ B̄0

τ

}
= max

{
PM ;

L

τ − b

}
(56)
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Equilibria when (b, x) = (τ, 0). In this case,

τP1 ≥ L− LF + τ P̄1 (57)

implies that equilibria must be such that LF = L. In this case, any savers’ beliefs

P1 ≥ max{PM ;L/τ} can be sustained in equilibrium.

A.2 Proof of Propositions 2, 4, and of the results in Section

3.5.2

We characterize the equilibria in the general case in which αM > 0, αF > 1, and

allowing for zero demand for reserves at any date—that is, without restricting the analysis

to liquid equilibria. The results in Section 3.5.2 then obtain by letting αF , αM → +∞,

that in Proposition 4 by restricting the analysis to equilibria such that xt > 0 for all

t ≥ 0, and that in Proposition 2 by doing both.

Note first that any equilibrium must be such that Pt ≥ PM for all t ≥ 2. Suppose by

contradiction that Pt < PM . Then M can raise the price to PM thereby both reaching

its target and reducing the burden of debt repayment, and savers should anticipate this

at t− 1.

At dates t ≥ 2.

• If λt > 0, then the equilibrium must be such that Pt = PM . Suppose by contradic-

tion that Pt > PM . Then M can reduce the price, possibly but not necessarily all

the way to PM , using all or part of λt to pay for the induced increase in real debt

due.

• If λt = 0, suppose that there exists k ≥ 1 such that xt−k, xt−k+1, ..., xt−1 > 0 and

λt−k > 0. (Note that such a k always exists when the equilibrium is liquid since

x0 = λ0 > 0). In this case it must also be that Pt = PM : Otherwise M can optimally

leave an arbitrarily small fraction of liquidity demand X̄t−k unsatisfied, and so on

at each date until t − 1 thereby ensuring λt > 0 in which case it can reduce the

price as seen above. If such a k does not exist then any Pt ∈ [PM , PM + αM ] is a

sustainable equilibrium outcome, unless of course xt−1 = bt−1 = 0 in which case M

can enforce Pt = PM since there are no outstanding liabilities at date t.

At dates 0 and 1.
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• Note first that the public sector defaults on L at date 1 if and only if φ1(x1 +

b1)(PM + αM) < L, in which case x0 = b0 = 0. Default comes at fixed costs for

both authorities and so default is total when it occurs, which savers anticipate at

date 0.

Otherwise, in the absence of default at date 1,

• If φ1(b1 + x1) = b0 then it must be that x0 = 0 and b0 > 0. Any date-1 price

P1 ∈ [max{PM ;L/b0}, PM + αM ] is a sustainable equilibrium outcome in this case,

implying that it must be that b0 ≥ L/(PM + αM).

• Suppose φ1(b1 +x1) > b0 and let L′ ≤ L the nominal value of the exogenous liability

that remains to be repaid at date 1. It must be that L′ ≤ λ1(PM +αM), and M sets

the date-1 price at the minimum level that averts default, P1 = max{PM ;L′/(PM +

αM)}. This implies in turn that at date 0, it is weakly dominant for M to minimize

L′ and thus to use x0 to prepay as much of L as possible. Conversely, F seeks to

induce the highest possible value of P1 and thus only prepays the minimum amount

that averts date-0 default, spending the residual on young date-(0) entrepreneurs.

As a result,

– If L ≤ [φ1(b1 +x1)− b0]PM then the date-1 price is PM and F does not prepay

any of L at date 0;

– If [φ1(b1 + x1) − b0]PM ≤ L ≤ [φ1(b1 + x1) − b0](PM + αM) then the date-0

price is L/[φ1(b1 + x1)− b0] and F does not prepay any of L at date 0;

– If [φ1(b1 + x1)− b0](PM + αM) ≤ L ≤ φ1(b1 + x1)(PM + αM) then the date-1

price is PM + αM and F prepays L/(PM + αM)− φ1(b1 + x1) at date 0.

A.3 Proof of Proposition 5

Ps is a convex set Let us show that the set of initial prices is convex. Let P0 > P ′0 two

feasible price levels associated with price level paths {Pt}t≥0 and {P ′t}t≥0. Let us show

that any price level P ′′0 = αP ′0 + (1−α)P0 with α ∈ [0, 1] is also feasible. To this purpose,

let us build a sequence of price levels {P ′′t }t≥0 so that P ′′t = P ′t for any t > 0 and let us

show that {P ′′t , st}t≥0 is a feasible policy.

Given this sequence of prices, we can use the budget constraint of the government to

construct a sequence of nominal debt D′′t+1 because b 7→ bφt(b) is continuously increasing.

We find that D′′t /P
′′
t+1 is smaller than D′t/P

′
t+1 but greater than Dt/Pt+1 for any date

t ≥ 0.
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Let us now show that the transversality condition is verified. For any k > 0, the

government budget constraint leads to:

φ̄′′k
D′′k/P

′′
k+1

D′′k−1/P
′′
k

=
φ̄′′k
φ′′k

(
1− sk

D′′k−1/P
′′
k

)
. (58)

According to assumption 1,
φ̄′′k
φ′′k
≤ φ̄′k

φ′k
because the debt D′′k ≤ D′k, therefore:

φ̄′′k
D′′k/P

′′
k+1

D′′k−1/P
′′
k

≤ φ̄′k
φ′k

(
1− sk

D′k−1/P
′
k

)
= φ̄′k

D′k/P
′
k+1

D′k−1/P
′
k

. (59)

The transversality condition can be rewritten as the limit when T tends to +∞ of

D−1

P ′′0

T∏
k=0

φ̄′′k
D′′k/P

′′
k+1

D′′k−1/P
′′
k

. (60)

Therefore inequality (59) shows that if the transversality condition is verified for the

policy (P ′, s) it is also verified for (P ′′, s).

Given that the set of convex sets of real numbers are intervals, the set of initial prices

is an interval of real numbers.

Ps and the game of chicken Suppose that Ps is not a singleton. Then it is immediate

that we can find a policy U ′ ∈ F that violates (32) (with s′ = s and P ′0 < P0).

Suppose now that the feasible policy U does not feature a game of chicken. There

exists a feasible policy U ′ 6= U in F that violates (32).

Either U ′ features P ′0 < P0 and s′ ≥ s. We want to show that the policy U ′′ = (P ′, s) is

feasible U ′′ ∈ F . Define {D′t}t≥0 and {D′′t }t≥0 the associated paths of the debt. Because

b 7→ bφt(b) is continuously increasing, D′′t exists and is lower than D′′t . Besides the

transversality condition is satisfied for the same argument than the one developed above

(see equation (59)). Therefore U ′′ ∈ F .

Or U ′ features P ′0 = P0 and there exists τ ≥ 0 such that s′τ < sτ and s′t ≤ st otherwise.

First, the same reasoning as above leads to prove that there exists a feasible policy U ′′

featuring P ′0 = P0 and for t = τ , s′τ < sτ and s′t = st otherwise. Then, consider the

problem at date t = τ . If the legacy debt Bτ−1/Pτ is the level of debt that leads to the

maximal level of resources at date τ − 1. In this case I THINK WE NEED STRICTLY

INCREASING bφ(b) FUNCTION. Otherwise, one can raise surpluses at date τ to remain

below sτ and increase the surpluses at date τ − 1. By doing so down to t = 0 we can

prove that there exists a trajectory of surpluses such that s′′0 < s0 and consistent with

a feasible policy. We can convert this initial lower level of surplus into a lower level of
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price level and set all the surpluses equal to st as above. We thus prove that Ps is not a

singleton.

A.4 Proof of Proposition 6

Rollover with diverging convenience yields implies pleasant monetary arith-

metic Suppose that there exists a sequence {b̃t}t≥0 such that b̃t−1 = φt(b̃t)b̃t at any date

t ≥ 0 and
∑

t≥0 δ(b̃t) diverges.

Consider the policy U such that the price level is constant (Pt = P ), st = 0 for any

date t > 0; s0 = D−1

P
; and Dt = 0 for any date t ≥ 0. This policy with no public debt is

always feasible as long as s0 < s̄0 which is verified by choosing a sufficiently large price

level P .

Consider now another policy U ′ such that P ′t = P ′ = D−1

b̃−1
and s′t = 0 for any t ≥ 0.

The path of debt
D′t
P ′

= b̃t thus satisfies the budget constraint with qt = φt(D
′
t/P

′).

Besides,

τ∏
i=t

(
φ̄i

(
Di

Pi+1

))
Dτ

Pτ+1

=
τ∏
i=t

(
φ̄i
φi

)
D−1

P0

, (61)

(62)

Thus, the log of the product is simply

−
τ∑
i=t

δi + ln

(
D−1

P0

)
, (63)

(64)

that tends to −∞ which proves that the transversality condition is satisfied. Therefore

U ′ is feasible. One can make sure that P ′ is lower than P because one can always increase

P and reduces s0, therefore the fiscal arithmetic is pleasant.

Pleasant monetary arithmetic implies the existence of a rollover with diverg-

ing convenience yields We prove this implication by contradiction.

Consider two feasible policies U and U ′ such that U ′ � U . We prove that U ′ 6= U

implies a contradiction.

For convenience, we denote by bt = Bt/Pt+1, Qt =
∏t

i=0 qi and Q̄t =
∏t

i=0 q̄i

First, since φt is decreasing, b′t ≥ bt for any t implies q′t ≤ qt.

In addition, there exists a date τ ≥ 0 such that bτ ′ > bτ .
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We compare the budget constraints for the two policies at any date t ≥ τ :

b′t − bt = s′t+1 − st+1 + q′t+1(b′t+1 − bt+1) + (q′t+1 − qt+1)bt+1, (65)

which implies

b′t − bt ≤ q′t+1(b′t+1 − bt+1). (66)

Repeating this inequality from t = τ to an arbitrary T > τ we find:

q′0 . . . q
′
T b
′
T ≥ q′0 . . . q

′
T bT + q′0 . . . q

′
τ (b
′
τ − bτ ). (67)

The first right-hand-side member is positive and the second right-hand-side member is

strictly positive and independent of T . Therefore, Q′T b
′
T cannot converge to zero and,

Q′T b
′
T =

Q′T
Q̄′T

Q̄′T b
′
T (68)

implies that Q′T/Q̄
′
T must be unbounded since Q̄′T b

′
T → 0.

Let now construct a rollover {b̃t}. We define b̃0 = b′0 − b0. Suppose that we can build

a rollover up to date t such that b̃t ≤ b′t − bt. Inequality (66) combined with the facts

that (b′t+1 − bt+1) < b′t+1 and that φt is decreasing show that we have:

b′t − bt ≤ φt+1(b′t+1 − bt+1)(b′t+1 − bt+1), (69)

which proves that there exists a feasible rollover at date t + 1, b̃t+1 such that b̃t+1 ≤
(b′t+1 − bt+1).

Finally, the fact that Q′T/Q̄
′
T must be unbounded means also that Q̃′T/

¯̃Q′T must be

unbounded. This is a contradiction since we assumed that any rollover must be such that∑
t δ
′
t converges.

Suppose there exists a policy profile {(Pt, st)}t≥0 associated with the feasible policy U

that does not feature a game of chicken. For instance, there exists another feasible policy

U ′ featuring P ′0 < P0, P ′t = Pt otherwise and s′t = st for any t ≥ 0. At date 0,

q0

(
B′0
P1

)
D′0
P1

=
D−1

P ′0
− s0 >

D−1

P0

− s0 = q0

(
D0

P1

)
D0

P1

Therefore, since the function b 7→ bφ0(b) is increasing, D′0 > D0. The same reasoning

leads to D′t ≥ Dt for any t > 0 (by induction). Therefore U ′ � U and U ′ 6= U which
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proves that the fiscal arithmetic is pleasant.

The exact same reasoning proves that if P ′0 ≤ P0 and s′t ≤ st for any t ≥ 0 with one

strict inequality, then the fiscal arithmetic is pleasant.

Suppose now that the fiscal arithmetic is pleasant. Thus there exists U ′ � U with

U ′ 6= U which contradicts the definition of the game of chicken 3.

A.5 Proof of Proposition 7

Properties of the lowest price level inf{Ps} Consider two levels of initial debt:

D−1 < D′−1. Suppose that Ps = inf(Ps(D−1)) ≥ P′s = inf(Ps(D′−1)). Suppose also that

inf{
mathcalP ′s} > 0. In addition, there exist a pair of positive scalars (ε1, ε2) such that

Ps + ε1 ∈ Ps and P′s + ε2 ∈ P ′s and Ps + ε1 ≥ P′s + ε2 .

Let define {Dt}t≥0 and {D′t}t≥0 the paths of debt associated with (Ps+ ε1, s) and D−1

and (P′s + ε2, s) and D′−1 respectively. Looking at the date-0 budget constraint we get:

D−1

Ps + ε1
= s0 + b0φ0(b0), (70)

D′−1

P′s + ε2
= s0 + b′0φ0(b′0). (71)

So, if the initial debt is D−1 it is also possible to have a price P0 such that:

D−1

P0

=
D′−1

P′s + ε2
and hence P0 = (P′s + ε2)

D−1

D′−1

, (72)

(73)

the real level of date-1 debt will simply be b′0 which is feasible since it is consistent with

{D′t}t≥0. Since ε2 can be as small as we want, it proves that there exists a price level

P0 ∈ Ps that is below P′s. This leads to a contradiction, thus inf(Ps) strictly increases

with D−1.

A very similar argument proves that inf(Ps) strictly decreases with s.

Rollover and bounded real level of debt We are going to prove that if there exists

a level b̃ > 0 such that there is no rollover (bt)t≥0 with b0 = b̃, then the real level of debt

is necessary bounded. The absence of rollover means that there exists τ > 0 such that

b 7→ bφτ (b) is bounded, let denote by M the upper bound. Therefore, the date-τ − 1

real level of debt is bounded Dτ−1/Pτ < s̄τ + M . By backward induction we can prove
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similarly that real levels of debt prior to date τ are also bounded. Finally, D−1/P0 is

bounded proving that for any legacy debt D−1 > 0, the lowest feasible price inf{Ps} is

strictly positive.

A.6 Proof of Proposition 8

Consider a feasible policy (P, s). The existence of a rollover of reserves with diverging∑
t∈N δ

X
t (xt) implies that the central bank can generate positive remittances for instance

at date 0 and then rollover the reserves to infinity. This remittances add up to the revenue

of the government and allows for reducing the initial price level or the surpluses at some

point.

A.7 Proof of Proposition 9

If reserves and bonds are perfect substitute (equation (48)), then equation (49) is

satisfied and we can apply all the results from section 4.2 replacing D by D̃; besides, since

d does not appear in equation (49), the remittances and the central bank’s balancesheet

does not matter for the joint determination of (P, s).

More precisely, if the policy without remittances (P, s) is feasible for an initial legacy

debt D̃−1, then there exists a unique path of debt D̃t that satisfies the government budget

constraint. The decomposition of this debt into (D,X,DB) is irrelevant, the only relevant

quantity being the overall net public liability D̃−1. Reciprocally, if the extended policy

(P, s, d) is feasible for an initial legacy debt D̃−1 then the policy (P, s) is also feasible for

a legacy debt D̃−1.

As a consequence, we get Ps = PXs for a given D̃−1.

In addition, if the fiscal arithmetic is unpleasant then the set of feasible prices Ps for

a given stream of surpluses s is simply a singleton –let call it {P0}– and extending the

policy space does not affect this set. Therefore, the fiscal arithmetic is also unpleasant

for the extended policies and the unique feasible price level is determined by the stream

of surpluses, that is, Ps = PXs = {P0}.
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