
Optimal growth, bequests and competitive

equilibrium cycles in two-sector OLG models∗

Elias CHAUMEIX

ENSAE
E-mail: elias.chaumeix@ensae-paristech.fr

Florian PELGRIN

EDHEC Business School
E-mail: florian.pelgrin@edhec.edu

and

Alain VENDITTI†‡

Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE
& EDHEC Business School

E-mail: alain.venditti@univ-amu.fr

This paper is dedicated to Pierre Cartigny (1946-2019)
and Carine Nourry (1972-2019)

Incomplete version. Do not quote without the authors’

permission

∗This work was supported by French National Research Agency Grants ANR-08-
BLAN-0245-01 and ANR-17-EURE-0020. We thank W. Briec, X. Raurich, T. Seegmuller
and G. Sorger for useful comments and suggestions. This paper also benefited from pre-
sentations at the “18th Journées Louis-André Gérard-Varet, Aix-en-Provence, June 13-14,
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Abstract: The objective of this paper is to provide a simple model that can explain the
long-run fluctuations of the annual flow of inheritance as identified by Piketty (2011) for
France and Atkinson (2018) for the UK. We consider a two-sector Barro-type (1974)
OLG model with non-separable preferences and bequests. The local stability properties of
the optimal path apprear to depend on preferences through the sign of the cross derivative
of the utility function, and on technologies through the sign of the capital intensity
difference across the two sectors. We show in a first part that, under the assumption
of a non-strictly concave utility function, preference and technology mechanisms can be
separated and lead, each of them, to the existence of period-two cycles if the life-cycle
utility function has a positive cross derivative across periods, and /or the consumption
good is more capital intensive than the investment good. In a second part, considering
a strictly concave utility function, the preference and technology mechanisms are now
combined and can lead to the existence of quasi-periodic cycles through a Hopf bifurcation
if the life-cycle utility function has a positive cross derivative across periods AND the
consumption good is more capital intensive than the investment good. We also show that
all these results are compatible with positive bequests.

Keywords: Two-sector overlapping generations model, optimal growth, endogenous
fluctuations, periodic and quasi-periodic cycles, altruism, bequest
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1 Introduction

It has been recently proved by Piketty [13] that in a country like France the
annual flow of inheritance was about 20–25% of national income between
1820 and 1910, down to less than 5% in 1950, and back up to about 15%
by 2010. The following graph indeed shows a long-run cyclic behavior of
inheritance flows.

Figure 1: Annual inheritance flow as a fraction of national income, France
1820-2008 (Source: Piketty [13])

Similar conclusions have been reached by Atkinson [1] for the UK as
shown in the following graph:

Figure 2: Comparison of France (red) and the United Kingdom (blue):
transmitted wealth as percentage of net national income from 1896 to 2008
(Source: Atkinson [1])
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The objective of this paper is to provide a simple model that can explain
such long-run fluctuations. The standard model that allows to study inher-
itance flows across generations has been initially provided by Barro [3] with
the concept of optimal bequest. As shown by Weil [17], as long as bequests
are strictly positive across generations, the solution of the Barro model is
equivalent to the solution of a Ramsey-type optimal growth model where a
central planner maximizes the total intertemporal welfare.

Building on the well-known stability properties of the aggregate Ram-
sey model, it can be easily shown that if the life-cycle utility function of
a representative generation living over two periods is additively separable,
then the optimal path monotonically converges toward the steady state.
In such a case there is no room for any cyclic behavior of bequests. But
Michel and Venditti [12] have proved that if the life-cycle utility function is
non-additively separable with a positive cross derivative across periods then
endogenous period-two cycles can occur. This conclusion shows that such
a model based on a preference mechanism is formally equivalent to a stan-
dard two-sector optimal growth model where period-two endogenous cycles
rely on a technology mechanism and occur if the consumption good is more
capital intensive than the investment good (see Benhabib and Nishimura
[5]). Considering our goal to describe accurately the long run dynamics of
bequests, the main critic of this result is that period-two cycles imply neg-
ative auto-correlations of variables which are not in line with the empirical
properties of macroeconomic time series and bequests in particular.

The strategy in this paper is then to extend the Michel and Venditti
[12] formulation to a two-sector economy. Beside introducing in the analysis
both mechanisms relying on preference and technology, the extended model
leads now to a dimension-four dynamical system which can give rise to the
existence of quasi-periodic optimal paths, through the occurrence of complex
characteristic roots, that are compatible with negative auto-correlation of
variables and are in line with the long run empirical properties of aggregate
time series. The analysis is divided in two parts. In a first part, under
the assumption of a non-strictly concave utility function, we show that the
preference and technology mechanisms can be separated and lead, each of
them, to the existence of period-two cycles. The global dynamics can then
be described as the product of two cycles implying complex properties of
the optimal path. In a second part, considering a strictly concave utility
function, the preference and technology mechanisms are now combined and
can lead to the existence of quasi-periodic cycles through a Hopf bifurcation
if the life-cycle utility function is non-additively separable with a positive
cross derivative across periods and the consumption good is more capital
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intensive than the investment good. We also show that all these results are
compatible with positive bequests.1

The paper is organized as follows. In Section 2 we present the two-
sector model with non-additively separable preferences, define the optimal
growth problem of the central planner, prove the existence of a steady state
and derive the characteristic polynomial from which the stability analysis
if conducted. The existence of period-two cycles under the assumption of
a non-strictly concave utility function is discussed in Section 3 together
with the presentation of a simple example to illustrate the main conditions.
Section 4 contains the extension to the case of a strictly concave utility
function. We provide general sufficient conditions that rule out the existence
of complex characteristic roots and we consider a specific class of utility
functions to prove the possible existence of a Hopf bifurcation and thus of
quasi-periodic cycles. In Section 5 we show that all our previous conditions
are compatible with the decentralized equilibrium characterized by strictly
positive bequests. Concluding comments are provided in Section 6 and all
the proofs are contained into a final Appendix.

2 The model

2.1 Production

We consider a two-sector economy with one pure consumption good y0 and
one capital good y. Each good is produced with a standard constant returns
to scale technology:

y0 = f0(k0, l0), y = f1(k1, l1)

with k0+k1 ≤ k, k being the total stock of capital, and l0+ l1 ≤ 1, the total
amount of labor being normalized to 1.

Assumption 1. Each production function f i : R2
+ → R+, i = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one and such
that for any x > 0, f i

ki
(0, x) = f i

li
(x, 0) = +∞, f i

ki
(+∞, x) = f i

li
(x,+∞) =

0.

For any given (k, y), we define a temporary equilibrium by solving the
following problem of optimal allocation of factors between the two sectors:

1Kalra [10] and Reichlin [14] provide conditions for the existence of Hopf cycles in
two-sector OLG models but do not take into account bequests.
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T (k, y) = max
k0,k1,l0,l1

f0(k0, l0)

s.t. y ≤ f1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ 1

k0, k1, l0, l1 ≥ 0

(1)

The value function T (k, y) is called the social production function and de-
scribes the frontier of the production possibility set. Constant returns to
scale of technologies imply that T (k, y) is concave non strictly. We will
assume in the following that T (k, y) is at least C2.2

Denoting p the price of the investment good, r the rental rate of capital
and w the wage rate, all in terms of the price of the consumption good, it
is easy to show that

Tk(k, y, ) = r(k, y), Ty(k, y) = −p(k, y) (2)

and
w(k, y) = T (k, y)− r(k, y)k + p(k, y)y (3)

We can also characterize the second derivatives of T (k, y). From the
concavity property we have:

Tkk(k, y) =
∂r
∂k ≤ 0, Tyy(k, y) = − ∂p

∂y ≤ 0

As shown by Benhabib and Nishimura [6], the sign of the cross derivative
Tky(k, y) is given by the sign of the relative capital intensity difference be-
tween the two sectors. Denoting a00 = l0/y0, a10 = k0/y0, a01 = l1/y and
a11 = k1/y the capital and labor coefficients in each sector, it is easy to
derive from the constant returns to scale property that

dp
dr = a01

(

a11
a01

− a10
a00

)

≡ b (4)

with b the relative capital intensity difference, and thus

Tky = Tyk = −∂p
∂r

∂r
∂k = −Tkkb

The sign of b and of Tky is positive if and only if the investment good is
capital intensive. Notice also that Tyy(k, y) may be written as

Tyy = −∂p
∂r

∂r
∂y = Tkkb

2

Remark : The derivative dr/dp = b−1 is well-known in trade theory as
the Stolper-Samuelson effect. Similarly, at constant prices, we can derive
the associated Rybczinsky effect dy/dk = b−1. We therefore find the well-
known duality between the Rybczinsky and Stolper-Samuelson effects.

2A proof of the differentiability of T (k, y) under Assumption 1 and non-joint production
is provided in Benhabib and Nishimura [5].
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2.2 Preferences

The economy is populated by a constant population of finitely-lived agents.3

In each period t, Nt = N persons are born, and they live for two periods:
they work during the first (with one unit of labor supplied) and they have
preferences for consumption (ct, when they are young, and dt+1, when they
are old) which are summarized by the utility function u(ct, Bdt+1), with
B > 0 a normalization constant, such that

Assumption 2. u(c,Bd) is increasing with respect to each argu-
ment (u1(c,Bd) > 0 and ud(c,Bd) > 0), concave and C2 over
the interior of R

2
+. Moreover, limX→0 XuX(c,X)/uc(c,X) = 0 and

limX→+∞XuX(c,X)/uc(c,X) = +∞, or limX→0 XuX(c,X)/uc(c,X) =
+∞ and limX→+∞XuX(c,X)/uc(C,X) = 0.

We also introduce a standard normality assumption between the two
consumption levels

Assumption 3. Consumptions c and d are normal goods.

We finally introduce the following useful elasticities of substitution of
consumptions:

ǫcc = −uc/uccc > 0, ǫcd = −uc/ucdBd, (5)

ǫdc = −ud/ucdc, ǫdd = −ud/uddBd > 0 (6)

Notice that the normality Assumption 3 implies 1/ǫcc−1/ǫdc ≥ 0 and 1/ǫdd−
1/ǫcd ≥ 0 and concavity in Assumption 2 implies 1/(ǫccǫdd)−1/(ǫdcǫcd) ≥ 0.

2.3 The optimal growth problem

Under complete depreciation within one period,4 the capital accumulation
equation is

kt+1 = yt (7)

Total labor being normalized to 1, we consider from now on that N = 1.
At each time t total consumption is then given by the social production
function, i.e. ct + dt = T (kt, yt). The objective of the central planner
combines utilities of successive generations

3An increasing population could be considered without altering all our results.
4Considering that in an OLG model one period is approximately 30 years, complete

depreciation is a realistic assumption.
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max
{ct,dt+1}

+∞
∑

t=0

βtu(ct, Bdt+1) (8)

where β ∈ (0, 1] is the discount factor.5 Considering (7) and the fact that
ct = T (kt, yt)−dt, the optimization program (8) can be equivalently written
as follows

max
{dt+1,kt+1}

+∞
∑

t=0

βtu(T (kt, kt+1)− dt, Bdt+1) (9)

with d0 and k0 given. The first order conditions are given by the following
two difference equations of order two:

ud(T (kt, kt+1)− dt, Bdt+1)B − βuc(T (kt+1, kt+2)− dt+1, Bdt+2) = 0

uc(T (kt, kt+1)− dt, Bdt+1)Ty(kt, kt+1) +

βuc(T (kt+1, kt+2)− dt+1, Bdt+2)Tk(kt+1, kt+2) = 0

(10)

Any path from d0 and k0 given that satisfy equations (10) together with the
following transversality conditions

lim
t→+∞

βtud(ct, Bdt+1)pt+1kt+1 = 0 and lim
t→+∞

βtud(ct, Bdt+1)dt+1 = 0

is an optimal path.

2.4 Steady state

A steady state is defined as kt = k∗, dt = d∗ for all t solutions of the following
equations

ud(T (k,k)−d,Bd)B
uc(T (k,k)−d,Bd) = β

−Ty(k,k)
Tk(k,k)

= β
(11)

Beside discussing the existence and uniqueness of the steady state, we need
also to use the normalization parameter B in order to normalize the sta-
tionary consumption d, rendering it constant when the discount factor β is
modified. As in the standard two-sector model, we get the following result:

Proposition 1. Under Assumptions 1-3, there exists a unique steady state
(k∗, d∗) solution of equations (11). Moreover, there exists a unique value B∗

such when B = B∗, the stationary consumption d∗ can be normalized to any
value d̄ ∈ (0, T (k∗, k∗)).

Proof. See Appendix 7.1.

A pair (k∗, d∗) will be called the Modified Golden Rule. The stationary
consumption of young agents is obtained from c∗ = T (k∗, k∗)− d∗.

5In the case β = 1, the infinite sum into the optimization program (8) may not converge.
In such a case we may apply the definition of optimality as provided by Ramsey [14].

6



2.5 Characteristic polynomial

Based on the above computations, the characteristic polynomial is derived
from total differentiation of equations (10). Denoting T (k∗, k∗) = T ∗,
Tk(k

∗, k∗) = T ∗
k and Tkk(k

∗, k∗) = T ∗
kk, let us define the following elas-

ticities of the consumption good’s output and the rental rate with respect
to the capital stock, all evaluated at the steady state

εck = T ∗
k k

∗/T ∗ > 0, εrk = −T ∗
kkk

∗/T ∗
k > 0 (12)

We get:

Proposition 2. Under Assumptions 1-3, the degree-4 characteristic poly-
nomial is given by

P(λ) = λ4 − λ3B + λ2C − λB
β + 1

β2 (13)

with
B = − β

bǫcc
εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb + ǫdc
βǫcc

+ ǫcd
ǫdd

C = − (1+β)
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb

(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 2
β

(14)

or equivalently

P(λ) =
[

λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(λb−1)(λβ−b)
βb

+ λ(λ− 1)
(

λ− 1
β

)

β
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

(15)

If λ is a characteristic root of (15), then λ̄, (βλ)−1 and (βλ̄)−1 are also
characteristic roots of (15). Moreover, at least two roots or a pair of complex
conjugate roots have a modulus larger than one, and one of the following
cases necessarily hold:

i) the four roots are real and distincts,
ii) the four roots are given by two pairs of non-real complex conjugates,
iii) there are two complex conjugates double roots or two real double roots.

Proof. See Appendix 7.2.

This Proposition is of crucial importance. It shows indeed that if there
exist a pair of complex characteristic roots (λ, λ̄) solutions of the quartic
polynomial (15), then a second pair of complex characteristic roots as given
by (βλ)−1 and (βλ̄)−1 are also solutions of (15). Therefore, Proposition
2 proves that the 4 characteristic roots are either all real or all complex.
Proposition 2 also implies that at most two characteristic roots can have
a modulus lower than 1 and thus that the steady state can be either
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saddle-point stable or totally unstable. Of course in this last case, periodic
cycles can occur.

Remark 1 : It important to notice that the degree-4 characteristic
polynomial (13) is a quasi-palindromic equation that can be solved explic-
itly, and its roots can be determined using only quadratic equations (see
Appendix 7.10 for details.).

Remark 2 : Notice that if b = 0, we get the one-sector formulation with
a two-dimensional dynamical system as considered in Michel and Venditti
[12]. The characteristic polynomial can indeed be simplified as follows

P(λ) = λ2 − λ
ǫdc
βǫcc

+
ǫcd
ǫdd

− (1+β)
ǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

1− β

ǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

) + 1
β

The same conclusions as in Michel and Venditti [12] are obviously derived.
Similarly, if the utility function is additively separable, i.e. ucd = udc = 0,

we get the two-sector optimal growth formulation with a two-dimensional
dynamical system as considered in Benhabib and Nishimura [5]. The char-
acteristic polynomial can indeed be simplified as follows

P(λ) = λ2 − λ(1 + β)
β

ǫcc

εck
εrk

+(β+b2)

β
ǫcc

εck
εrk

+(1+β)b
+ 1

β

The same conclusions as in Benhabib and Nishimura [5] are then derived.

Under Assumption 2, the sign of the expression ǫcc
ǫdc

− ǫcd
ǫdd

is given by the
sign of the cross derivative ucd, i.e. by the opposite of the sign of ǫcd, ǫdc,
which is a crucial ingredient to determine the local stability properties of the
steady state. Moreover, we easily notice from (15) that if the utility function
is non-strictly concave, i.e. if ǫcc

ǫdc
− ǫcd

ǫdd
= 0, then the degree-4 polynomial

simplifies to a product of two degree-2 polynomials which are then quite
simple to solve. We then proceed in two steps, first focusing on the simpler
case of a non-strictly concave utility function, and second considering the
more general case of strictly concave preferences.

3 Period-two cycles under non-strictly concave

preferences

Let us introduce the following Assumption:

Assumption 4. The utility function u(c,Bd) is concave non-strictly, i.e.
ǫcc
ǫdc

− ǫcd
ǫdd

= 0.
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As a preliminary result, we show that under such a restriction, the char-
acteristic roots cannot be complex

Lemma 1. Under Assumptions 1-4, the characteristic roots are real.

Proof. See Appendix 7.3.

Following simultaneously the same methodologies as in the two-sector
optimal growth model and the optimal growth solution of the aggregate
OLG model, we discuss the local stability properties of equilibrium paths
depending both on the sign of the capital intensity difference across sectors
b and the sign of the cross derivative ucd, i.e. of the two elasticities ǫcd and
ǫdc.

We first provide with the following Proposition some simple conditions
ensuring the saddle-point property with monotone convergence.

Proposition 3. Under Assumptions 1-4, if b ≥ 0 and ǫcd, ǫdc ≥ 0, i.e.
ucd ≤ 0, then the equilibrium path is monotone and the steady-state (k∗, d∗)
is a saddle-point.

Proof. See Appendix 7.4.

We now show that convergence with oscillations and persistent compet-
itive equilibrium cycles may occur under a quite large set of circumstances.

Proposition 4. Under Assumptions 1-4, the following results hold:
i) When the investment good is capital intensive, i.e. b ≥ 0, let ǫcd, ǫdc <

0, i.e. ucd > 0. Then the steady state (k∗, d∗) is saddle-point stable with
damped oscillations if and only if ǫcc ∈ (0,−ǫdc)∪ (−ǫdc/β,+∞). Moreover,
when ǫcc crosses the bifurcation values −ǫdc or −ǫdc/β, (k

∗, d∗) undergoes a
flip bifurcation leading to persistent period-2 cycles.

ii) When ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0, let the consumption good be capital
intensive, i.e. b < 0. Then the steady state (k∗, d∗) is saddle-point stable
with damped oscillations if and only if b ∈ (−∞,−1)∪ (−β, 0). Moreover, if
there is some β∗ ∈ (0, 1) such that b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1)
such that, when β crosses β̄ from above, (k∗, d∗) undergoes a flip bifurcation
leading to persistent period-2 cycles.

iii) When the consumption good is capital intensive, i.e. b < 0, and
ǫcd, ǫdc < 0, i.e. ucd > 0, the steady state (k∗, d∗) is saddle-point stable
with damped oscillations if and only if b ∈ (−∞,−1) ∪ (−β, 0) and ǫcc ∈
(0,−ǫdc) ∪ (−ǫdc/β,+∞). Moreover, if there is some β∗ ∈ (0, 1) such that
b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from
above or ǫcc crosses the bifurcation values −ǫdc or −ǫdc/β, (k

∗, d∗) undergoes
a flip bifurcation leading to persistent period-2 cycles.
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Proof. See Appendix 7.5.

Proposition 4 provides two independent mechanisms leading to the ex-
istence of endogenous fluctuations. The first one is based on the properties
of preferences through the sign of the cross derivative ucd and is the more
interesting as it allows to generate period-2 cycles in a two-sector model even
under a capital intensive investment good sector, a condition which is known
since Benhabib and Nishimura [6] to guarantee monotone convergence in a
standard optimal growth model. In order to provide an economic intuition,
let us consider an instantaneous increase in the capital stock kt. From the
equality ct + dt = T (kt, yt) and the fact that Tk > 0, we derive that ct in-
creases, and thus, using the fact that the marginal utility of second period
consumption ud is larger as udc > 0, a constant utility level u(ct, dt+1) can
be obtained from a decrease of dt+1. Consider then the first equation in
(10). We derive for a given dt+2

∆ct+1

∆ct
= udc

uccβ
+ udd

uccβ
∆dt+1

∆ct
< 0

It follows therefore from the equality ct+1 + dt+1 = T (kt+1, yt+1) that total
consumption at time t + 1 is lower, implying for a constant yt+1, a lower
capital stock kt+1. Endogenous fluctuations are thus generated from con-
sumption intertemporal allocations.

The second mechanism is, as in the two-sector optimal growth model,
based on the properties of sectoral technologies through the sign of the cap-
ital intensity difference across sectors. Following Benhabib and Nishimura
[6], we can use the Rybczinski and Stolper-Samuelson effects to provide a
simple economic intuition for this result. Assume indeed that the consump-
tion good is capital intensive, i.e. b < 0, and consider an instantaneous
increase in the capital stock kt. This results in two opposing forces:

- The trade-off in production becomes more favorable to the consump-
tion good, and the Rybczinsky effect implies a decrease of the output of the
capital good yt. This tends to lower the investment and the capital stock in
the next period kt+1.

- In the next period the decrease of kt+1 implies again through the Ry-
bczinsky effect an increase of the output of the capital good yt+1. Indeed
the decrease of kt+1 improves the trade-off in production in favor of the in-
vestment good which is relatively less intensive in capital and this tends to
increase the investment and the capital stock in period t+ 2, kt+2.

Of course, under both mechanisms, the existence of persistent fluctua-
tions require that the oscillations in consumption and relative prices must
not present intertemporal arbitrage opportunities. A minimum level of
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myopia, i.e. a low enough value for the discount rate β, is thus necessary.
Note finally that in case iii) of Proposition 4, both mechanisms hold at the
same time. It is important to mention here that this case is of particular
interest. Indeed, using both β and ǫcc as two bifurcation parameters
allows to consider a co-dimension 2 bifurcation which corresponds to
the flip bifurcation with a 1:2 resonance where two characteristic roots
are equal to −1 simultaneously. As shown in Kuznetsov [11], in such a
configuration, under non-degeneracy conditions, the steady state is either
saddle-point stable or elliptic. This last case may give rise to the existence
of quasi-periodic cycles which are usually associated to a Hopf bifurcation.

Let us provide an illustration for all these cases assuming the particular
class of homogeneous of degree γ ≤ 1 utility functions with B = 1,6 which
obviously satisfies Assumptions 2 and 3. Building on this property, we
introduce the share of first period consumption within total utility φ(c, d) ∈
(0, γ) defined as follows:

φ(c,Bd) = uc(c,Bd)c
u(c,Bd)

(16)

The share of second period consumption within total utility is similarly
defined as γ − φ(c,Bd) ∈ (0, 1). From (5)-(6) we get

ǫcd = − ǫcc
1−ǫcc(1−γ) , ǫdc = − (γ−φ)ǫcc

φ[1−ǫcc(1−γ)] , ǫdd = (γ−φ)ǫcc
φ−ǫcc(1−γ)(2φ−γ)

and concavity requires the following restriction:

Assumption 5. ǫcc <
γ

φ(1−γ)

Under this restriction, we obviously get ǫdd > 0 while ǫcd, ǫcd < 0 if and
only if ǫcc < 1/(1 − γ) ≡ ǫ̃cc(< γ/φ(1− γ)). Moreover, we can compute the
elasticity of substitution between the two life-cycle consumption levels as

σ = ǫcc(γ−φ)
γ−φǫcc(1−γ)

We assume for now that γ = 1 which implies that Assumptions 4 and 5
hold. Let us focus first on the case i) of Proposition 4 where endogenous fluc-
tuations arise under a capital intensive investment good. Both consumption
levels are normal goods and the cross derivative ucd is obviously positive.7

We get the following Corollary:

6We do not need to introduce a normalization constant B with this class of utility
function.

7These results are derived from concavity and standard Euler equalities for homo-
geneous functions, namely u(c,Bd) = uc(c,Bd)c + ud(c,Bd)Bd, 0 = ucc(c, Bd)c +
ucd(c,Bd)Bd and 0 = udc(c,Bd)c+ udd(c,Bd)Bd.
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Corollary 1. Under Assumption 1, let the utility function u(c,Bd) be linear
homogeneous. Then, for any given sign of the capital intensity difference b,
the steady state (k∗, d∗) is saddle-point stable with damped oscillations if and
only if φ ∈ (0, φ) ∪ (φ̄, 1), with φ = 1/2 and φ̄ = 1/(1 + β). Moreover, when
φ crosses the bifurcation values φ or φ̄, (k∗, d∗) undergoes a flip bifurcation
leading to persistent period-2 cycles.

Proof. See Appendix 7.6.

Corollary 1 precisely illustrates the existence of period-2 cycles for a
class of standard linear homogeneous preferences even when the investment
good is capital intensive.

Let us now illustrate the case iii) of Proposition 4 where a co-dimension 2
bifurcation can arise. We need to consider precise specifications for the sec-
toral production functions. Assume as in Baierl et al. [2] that the consump-
tion and investment goods are produced with Cobb-Douglas technologies as
follows

y0 = kα0
0 l1−α0

0 , y = kα1
1 l1−α1

1 (17)

It can be shown that
b = β(α1−α0)

1−α0
(18)

We then derive the following Corollary:

Corollary 2. Let the utility function be homogeneous of degree 1 and the
sectoral production functions be given by (17), and assume that α0 > (1 +
α1)/2 such that b ∈ (−∞,−1). Then the steady state (k∗, d∗) is saddle-point
stable with damped oscillations if and only if φ ∈ (0, φ) ∪ (φ̄, 1) and β > β,
with φ = 1/2, φ̄ = 1/(1+β) and β = (1−α0)/(α0−α1). If β = β and φ = φ̄
or φ, then a co-dimension 2 flip bifurcation with a 1:2 resonance generically
occurs.

Proof. See Appendix 7.7.

While providing a precise dynamic analysis of this co-dimension 2 bi-
furcation goes far beyond the goal of this paper, it is worthwhile to men-
tion that this case provides an interesting possibility of smooth endogenous
fluctuations for the main aggregate variables which does not arise under a
standard flip bifurcation. Indeed, while there does not a priori exist complex
characteristic roots under a linear homogenous utility function, Kuznetsov
[11] shows that under a 1:2 resonance, the steady state can be elliptic and
a stable limit cycle, similar to those that arise under a Hopf bifurcation,
can occur. As we will show in the next section, a Hopf bifurcation provides
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a better tool to describe the long-run cyclical behavior of macroeconomic
variables such as bequests.

4 Quasi-periodic cycles under strictly concave

preferences

Up to now we have simplified the analysis to the consideration of a non-
strictly concave utility function in order to reduce the degree-4 characteristic
polynomial to the product of two degree-2 polynomials. In such a frame-
work, we have shown that the characteristic roots are necessarily real and
that endogenous fluctuations can occur through the existence of period-two
cycles. But from an empirical point of view, period-two cycles are associ-
ated to the unrealistic property of negative auto-correlation of variables. In
order to solve this problem, we need to focus on the existence of complex
characteristic roots for which quasi-periodic cycles occurring through a Hopf
bifurcation can generate fluctuations that are compatible with positive auto-
correlations. Such a property is required to provide an empirically relevant
description of smooth long-run fluctuations of variables such as bequests.

We can start by providing general sufficient conditions allowing to rule
out the existence of complex roots.

Proposition 5. Under Assumptions 1-3, let the utility function u(c,Bd)
be strictly concave. Then the roots of the characteristic polynomial (15) are
necessarily real in the following cases:

i) for any sign of ǫcd, ǫcd if the investment good sector is capital intensive,
i.e. b > 0,

ii) if ǫcd, ǫcd > 0 and the consumption good sector is capital intensive,
i.e. b < 0.

Proof. See Appendix 7.8.

Necessary conditions for the existence of complex roots are therefore
based on the two mechanisms that generate endogenous fluctuations in the
non-strictly concave case, namely b < 0 and ǫcd, ǫcd < 0. In order to study
whether complex characteristic roots and a Hopf bifurcation with quasi-
periodic cycles can occur, let us consider again a utility function homoge-
neous of degree γ, but now assuming γ < 1 to allow for strict concavity.

We first provide sufficient conditions to ensure saddle-point property of
the steady state with real characteristic roots.

13



Proposition 6. Let the utility function be homogeneous of degree γ < 1,
and assume that ǫcc < ǫ̃cc, b ∈ (−∞,−1) ∪ (−β, 0) and

− εck
bεrk

> 1 (19)

Then there exist 0 < φ ≤ φ̄ < γ and ǫ̂cc ∈ (0, ǫ̃cc) such that when φ ∈
(0, φ)∪ (φ̄, γ) the characteristic roots are real and the steady-state is saddle-
point stable. Moreover,

i) when φ ∈ (φ̄, γ), the optimal path converges towards the steady state
with oscillations if ǫcc ∈ (0, ǫ̂cc) or monotonically if ǫcc ∈ (ǫ̂cc, ǫ̃cc),

ii) when φ ∈ (0, φ), the optimal path converges towards the steady state
with oscillations.

Proof. See Appendix 7.9.

Condition (19) allows to get the existence of the bound ǫ̂cc and thus of
the existence of oscillations when φ ∈ (φ̄, γ). This restriction may be easily
interpreted. Denoting σi the elasticity of capital-labor substitution in sector
i = 0, 1 and using Drugeon [9], we may relate the ratio of elasticities εck/εrk
to an aggregate elasticity of substitution between capital and labor, denoted
Σ, which is obtained as a weighted sum of the sectoral elasticities σi. We
have indeed:8

εck
εrk

=
(

T
l20

)

s
1−s

Σ
GDP with Σ = GDP

pykT (pyk0l0σ0 + Tk1l1σ1) (20)

GDP = T + py and s = rk/GDP the share of capital income in GDP.
Therefore, oscillations when φ ∈ (φ̄, γ) are associated with a large aggregate
elasticity of substitution between capital and labor i.e., large enough sectoral
elasticities of capital-labor substitution.

Proposition 6 implies that the existence of complex roots, if any, requires
to consider values of φ such that φ ∈ (φ, φ̄). We can then derive the fol-
lowing result that provides sufficient conditions for the occurrence of a Hopf
bifurcation:

Proposition 7. Let the utility function be homogeneous of degree γ < 1,
and assume that ǫcc < ǫ̃cc and b ∈ (−β, 0). Then there exist b̄ ∈ (−β, 1),
γ ∈ (0, 1), ǫcc, ǭcc ∈ (0, ǫ̃cc), ε̄ > 0 and four critical values (φ ≤)φc < φH <

φ̄H < φ̄c(≤ φ̄) such that when b ∈ (−β, b̄), γ ∈ (γ, 1), ǫcc ∈ (ǫcc, ǭcc) and

− εck
bεrk

< ε̄ (21)

the following results hold:

8The expression of Σ is derived from Proposition 2 in Drugeon [9].
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i) the steady state (k∗, d∗) is saddle-point stable with damped oscillations
if φ ∈ (φc, φH) ∪ (φ̄H , φ̄c),

ii) when φ crosses the bifurcation values φH or φ̄H , (k∗, d∗) undergoes a
Hopf bifurcation leading to persistent quasi-periodic cycles.

Proof. See Appendix 7.10.

From a theoretical point of view, Proposition 7 provides a strong con-
clusion as it shows that a Hopf bifurcation and quasi-periodic cycles can
occur in a two-sector optimal growth framework as long as it is based on an
OLG structure with non-separable and strictly concave preferences. More
specifically, we need intermediate values for the elasticity of intertemporal
substitution in consumption and, using (20), not too large values for the
sectoral elasticities of capital-labor substitution.

Such a result is drastically different from what can be obtained in stan-
dard optimal growth models as the existence of complex roots requires to
consider at least three sectors.9 From an empirical point of view, Proposition
7 also provides a strong conclusion which is related to the quasi periodicity
of the cycles leading to positive auto-correlations of variables. Such a prop-
erty is required to provide an empirically relevant description of long-run
fluctuations of bequests.

Let us now focus on a numerical illustration. Considering that the annual
discount factor is often estimated to be around 0.96 and that one period in
an OLG model is about 30 years, we consider here that β = 0.9630 ≈ 0.294.
Focusing on a slight deviation with respect to the linear homogeneous case
with γ = 0.98, let us then assume a standard value ǫcc = 1 that satisfies
ǫcc < ǭcc. We also consider sectoral Cobb-Douglas technologies as given
by (17) with α0 = 0.6 and α1 = 0.21 so that the consumption good is
capital intensive with b ≈ −0.28665 close to −β. The bounds exhibited
in Proposition 7 are equal to φc ≈ 0.38858 and φ̄c ≈ 0.865. We then
find that the characteristic polynomial (49) admits four characteristic roots
λ1, λ2, λ3, λ4 that are complex conjugate by pair with λ1λ2 > 1 and λ3λ4 < 1
if φ ∈ (φ, φH) ∪ (φ̄H , φ̄) while λ3λ4 > 1 if φ ∈ (φH , φ̄H), with φH ≡ 0.5674

and φ̄H ≡ 0.6713. Moreover λ3λ4 = 1 when φ = φH or φ̄H . As a result

φH and φ̄H are Hopf bifurcation values giving rise to quasi-periodic cycles
in their neighborhood.

We need finally to show that the existence of optimal endogenous cycles
is compatible with strictly positive bequest transmissions across generations.

9See Benhabib and Nishimura [5], Cartigny and Venditti [7], Venditti [16].
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5 The solution with altruistic agents and a be-

quest motive

Let us consider a decentralized economy composed of overlapping genera-
tions of parents loving their children. As in the Barro [3] formulation, each
agent is altruistic towards his descendant through a bequest motive. Parents
indeed care about their child’s welfare by taking into account their child’s
utility into their own utility function. They are now price-takers, considering
as given the prices pt, wt and rt+1 as defined by (2) and (3), and determine
their optimal decisions with respect to their budget constraints

wt + ptxt = ct + st and Rt+1st = dt+1 + pt+1xt+1 (22)

with Rt+1 = rt+1/pt the gross rate of return, st the savings of young agents
born in t and xt the amount of bequest transmitted at time t by agents
born in t− 1. Note that bequest xt is expressed as an investment good and
requires the relative price pt to enter the budget constraints. In each period,
bequests must be non-negative:

xt ≥ 0 for all t ≥ 0 (23)

An altruistic agent has a utility function given by the following Bellman
equation

Vt(xt) = max
ct,dt+1,st,xt+1

{u(ct, Bdt+1) + βVt+1(xt+1)}

= max
{ct,dt+1,st,xt+1}

+∞
∑

t=0

βtu(ct, Bdt+1)
(24)

subject to (22) and (23). β is now interpreted as the intergenerational de-
gree of altruism. It is well-known from the first welfare theorem that this
altruistic problem is equivalent to the central planner problem (8), and the
equilibrium is the unique Pareto optimum which coincides with the cen-
tralized solution. However, such an equivalence requires the non-negativity
constraints of bequests (23) to hold with a strict inequality in order to pre-
serve the link across generations.

Denoting qt the shadow price of bequest xt, we define the generalized
Lagrangian associated to the optimization program (24)

L = u(ct, Bdt+1) + β
qt+1

pt+1
[Rt+1(wt + ptxt − ct)− dt+1]− qtxt

The first order conditions are the following
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uc(ct, Bdt+1) = βqt+1Rt+1

pt+1

ud(ct, Bdt+1)B = βqt+1

pt+1

βqt+1Rt+1pt
pt+1

≤ qt with an equality if xt > 0

Consider now the two budget constraints in (22) evaluated at the steady
state. Solving with respect to st using the fact that st = ptyt = ptkt+1 and
Rt+1 = rt+1/pt we get

p∗x∗
(

1− 1
R∗

)

= c∗ + d∗

R∗ − w∗ = T (k∗, k∗)− w∗ − d∗
(

1− 1
R∗

)

= (r∗k∗ − d∗)
(

1− 1
R∗

)
(25)

If x∗ > 0, i.e. r∗k∗ > d∗, then we derive from the fist order conditions that
R∗ = r∗/p∗ = β−1 and ud(c

∗, Bd∗) = βuc(c
∗, Bd∗), which are exactly the

same conditions as (11). We then obtain:

Proposition 8. Under Assumptions 1-3, for any β ∈ (0, 1), there exists
a unique value B∗ such that when B = B∗, bequests are positive in the
economy with degree of altruism equal to β.

Proof. See Appendix 7.11.

When bequests are positive at the steady state, then by continuity there
are positive in a neighborhood of the steady state and the local stability
properties provided in Propositions 3, 4 and 7 hold. In particular, the
existence of optimal cycles and business fluctuations hold under positive
bequests.

In order to illustrate this result, let us consider first the linear homo-
geneous utility function previously considered with γ = 1, and the Cobb-
Douglas production structure as given by (17). Using (46) in Appendix 7.7,
we derive that r∗k∗ > d∗ and thus x∗ > 0 if and only if

α0βφ
1−φ − (1− α0 − βα1) > 0

It follows immediately that if α1 > 1 − α0 and β > (1 − α0)/α1, then
1 − α0 − βα1 < 0 and x∗ > 0 for any φ ∈ (0, 1). The existence of periodic
cycles is thus compatible with positive bequests. Similarly, when α1 < 1−α0,
straightforward computations show that x∗ > 0 if and only if

φ γ(1−α0−βα1)
1−α0+β(α0−α1)

≡ φ̃1

It follows that the conditions of Corollary 1 for the existence of period-
2 cycles can be satisfied if φ̃ < φ = 1/2. Sufficient conditions for this
inequality to be satisfied are given by α1 ∈ (1 − 2α0, 1 − α0) and β >
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(1 − α0)/(α0 + α1) ≡ β with β < 1. This example clearly shows that when
the degree of altruism is large enough, endogenous optimal fluctuations are
compatible with positive bequests. Moreover, this result holds for any sign
of the capital intensity difference across sectors.

It is worth noticing that if, under α1 ∈ (1 − 2α0, 1 − α0), we assume
that φ > φ̃ with φ̃ > φ̄, then bequests are positive but the conditions of
Corollary 1 for the existence of period-2 cycles cannot be satisfied and the
steady state is saddle-point stable. This inequality is satisfied if and only if
α1 ∈ (1 − 2α0, 1 − α0), α0 < 1/2 and β < (1 − 2α0)/α1. Therefore, if the
degree of altruism is not large enough, persistent endogenous fluctuations
cannot arise.

Let us finally illustrate the possible existence of quasi-periodic cycles
under positive bequests when the utility function is homogeneous of degree
γ < 1 as in Section 4. Using again (46) in Appendix 7.7, we derive that
r∗k∗ > d∗ and thus x∗ > 0 if and only if

α0φβ − (γ − φ) (1− α0 − βα1) > 0

Consider then the particular illustration in Section 4 which is such that
1 − α0 − βα1 > 0 and α0 > α1. It follows that bequests are positive if and
only if

φ > γ(1−α0−βα1)
1−α0+β(α0−α1)

≡ φ̃γ

With γ = 0.98, α0 = 0.6 and α1 = 0.21, we get φ̃γ ≈ 0.644 ∈ (φH , φ̄H).
It follows that positive bequests are compatible with quasi-periodic cycles.
Indeed, the steady state, which is characterized by strictly positive bequests
if φ > φ̃γ , is saddle-point stable with damped oscillations if and only if
φ ∈ (φ̄H , φ̄). Moreover, when φ crosses the bifurcation values φ̄H from
above, the steady state undergoes a Hopf bifurcation leading to persistent
quasi-periodic cycles and thus long-run fluctuations of bequests.

6 Concluding comments

7 Appendix

7.1 Proof of Proposition 1

Consider in a first step the second equation in (11). Notice that the steady
state value for k only depends on the characteristics of the technologies
and is independent from the utility function. Moreover, this equation is
equivalent to the equation which defines the stationary capital stock of a

18



standard two-sector optimal growth model. The proof of Theorem 3.1 in
Becker and Tsyganov [4] restricted to the case of one homogeneous agent
applies so that there exists one unique k∗ solution of this equation.

Consider now the first equation in (11) evaluated at k∗. We get:

ud(T (k∗,k∗)−d,Bd)B
uc(T (k∗,k∗)−d,Bd) ≡ h(d) = β (26)

The function h(d) is defined over (0, T (k∗, k∗)) and satisfies

h′(d) =
Budd
ud

−ucd
uc

+ucc
uc

−Bucd
ud

ucud
= −β

[

1
d

(

1
ǫdd

− 1
ǫcd

)

+ 1
c

(

1
ǫcc

− 1
ǫdc

)]

Assumption 3 implies that h′(d) < 0. This monotonicity property together
with the boundary conditions in Assumption 2 finally ensure the existence
and uniqueness of a solution d∗ ∈ (0, T (k∗, k∗)) of equation (26).

For a given k∗, consider a particular value d∗ = d̄ ∈ (0, T (k∗, k∗)). d̄ is a
steady state if

ud(T (k∗,k∗)−d̄,Bd̄)B
uc(T (k∗,k∗)−d̄,Bd̄)

≡ g(B) = β (27)

We easily get
g′(B) = −ud

uc

[

1
ǫdd

− 1
ǫcd

− 1
]

which is generically different from zero. Therefore, under the boundary
conditions in Assumption 2, there generically exists a unique value B∗ such
that when B = B∗, d∗ = d̄ is a normalized steady state.

7.2 Proof of Proposition 2

Using (5)-(6) and the fact that at the steady state −T ∗
y = βT ∗

k , total differ-
entiation of the first order equations (10) gives after tedious but straightfor-
ward computations:

−∆kt
βT ∗

k
ǫcc

ǫdc
+∆kt+1βT

∗
k

(

1 + βǫcc
ǫdc

)

+∆dt
βǫcc
ǫdc

−∆dt+1β
(

1 + βǫccǫcd
ǫdcǫdd

)

= ∆kt+2β
2T ∗

k −∆dt+2
β2ǫcc
ǫdc

∆kt

(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

−∆kt+1

(

β(1+β)T ∗2
k

ǫccc∗T ∗
kk

−∆− b2
)

−∆dt
βT ∗

k

ǫccc∗T ∗
kk

+ ∆dt+1
βT ∗

k

ǫccc∗T ∗
kk

(

1 + βǫcc
ǫdc

)

= −∆kt+2β
(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

+∆dt+2
β2T ∗

k

ǫccc∗T ∗
kk

Denoting ∆ξt = ∆kt+1 and ∆ζt = ∆dt+1, we get the following matrix
expression of the previous linear system:
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









1 0 0 0
0 1 0 0

0 0 β2T ∗
k −β2ǫcc

ǫdc

0 0 −
(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

β2T ∗
k

ǫccc∗T ∗
kk



















∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









=













0 0 1 0
0 0 0 1

−βT ∗
k
ǫcc

ǫdc

βǫcc
ǫdc

βT ∗
k

(

1 + βǫcc
ǫdc

)

−β
(

1 + βǫccǫcd
ǫdcǫdd

)

βT ∗2
k

ǫccc∗T ∗
kk

− b
βT ∗

k

ǫccc∗T ∗
kk

−β(1+β)T ∗2
k

ǫccc∗T ∗
kk

+ β + b2
βT ∗

k

ǫccc∗T ∗
kk

(

1 + βǫcc
ǫdc

)





















∆kt
∆dt
∆ξt
∆ζt









⇔ A









∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









= B









∆kt
∆dt
∆ξt
∆ζt









with

A =

(

I 0
0 A22

)

and B =

(

0 I
B21 B22

)

Matrix A is invertible as detA = detA22 = δ3bǫcc/ǫdc, and we get

A−1 =

(

I 0

0 A−1
22

)

with A−1
22 =





T ∗
k

βbǫccc∗T ∗
kk

1
βb

ǫdc
β2ǫcc

(

βT ∗2
k

bǫccc∗T ∗
kk

− 1
)

ǫdcT
∗
k

βbǫcc





The linearized dynamical system can then be expressed as follows








∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









= A−1B









∆kt
∆dt
∆ξt
∆ζt









=

(

0 I

A−1
22 B21 A−1

22 B22

)









∆kt
∆dt
∆ξt
∆ζt









≡ J









∆kt
∆dt
∆ξt
∆ζt









Using (12), tedious but straightforward computations give the characteristic
polynomial

P(λ) = λ4 − λ3B + λ2C − λB
β + 1

β2 (28)

with
B = − β

bǫcc
εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb + ǫdc
βǫcc

+ ǫcd
ǫdd

C = − (1+β)
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb

(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 2
β

(29)

After simplifications we get the expression (15).
Consider now that λ is a root of the characteristic polynomial (15), i.e.

P(λ) = 0. It follows obviously that if λ is complex then its conjugate λ̄ is
also a characteristic root. Let us then consider P((βλ)−1), namely
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P
(

1
βλ

)

=
[

1
β2λ2 − 1

βλ

(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(

b
βλ

−1
)

( 1
λ
−b))

βb

+ 1
βλ

(

1
βλ − 1

)(

1
βλ − 1

β

)

β
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

= 1
β4λ4

{

[

λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(λb−1)(λβ−b)
βb

+ λ(λ− 1)
(

λ− 1
β

)

β
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

}

= 0

If follows that (βλ)−1 is also a characteristic root. The same argument
applies for (βλ̄)−1. It follows that the four characteristic roots are either all
real, or given by two pairs of complex conjugates. Moreover, at least two
roots or a pair of complex conjugate roots have a modulus larger than one.

The nature of the characteristic roots can be derived considering the
following expressions:

∆ = 256
β6 − 192B2

β5 − 128C2

β4 + 288B2C
β4 − 60B4

β4 − 80B2C2

β3 + 36B4C
β3

− 4B6

β3 + 16C4

β2 − 8B2C3

β2 + B4C2

β2

D = 64
β2 − 16C2 + 16B2C − 16B2

β − 3B4

P = 8C − 3B2

R = B
[

B2 + 8
β − 4C

]

(30)

Since we already know that the characteristic roots are either all real, or all
complex, we immediately derive that ∆ ≥ 0. Tedious but straightforward
computations also show that

D = R
B

[

8
β − 3B2 + 4C

]

∆ =
(β2C2−4βB2+4βC+4)R2

β4B2

(31)

It follows that if R = 0 then D = 0 and ∆ = 0. This implies the following
characterization of the roots:

i) when ∆ > 0 the characteristic roots are real and distincts if P < 0
and D < 0, and given by two pairs of non-real complex conjugates if P > 0
or D > 0;

ii) when ∆ = R = D = 0, there are two complex conjugates double roots
or two real double roots depending on whether P > 0 or P < 0.
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7.3 Proof of Lemma 1

Under Assumption 4, let us denote the two degree-2 polynomials as follows

P1(λ) = λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β , P2(λ) =

(λb−1)(λβ−b)
βb

(32)

The discriminant of P1(λ) is equal to:

∆1 =
(

ǫdc
βǫcc

+ ǫcd
ǫdd

+ 2√
β

)(

ǫdc
βǫcc

+ ǫcd
ǫdd

− 2√
β

)

Using (5)-(6) we get

∆1 =
(

1
ucd

)2 (

ucc +
2ucd√

β
+ udd

β

)(

ucc − 2ucd√
β

+ udd

β

)

=
(

1
ucd

)2 (

1 1√
β

)

(

ucc ucd
udc udd

)

(

1
1√
β

)

×
(

1 − 1√
β

)

(

ucc ucd
udc udd

)

(

1
− 1√

β

)

Under the concavity property in Assumption 2, the Hessian matrix of the
utility function u(c, d) is quasi-negative definite which implies ∆1 ≥ 0 and
the associated characteristic roots are necessarily real. From P2(λ) we ob-
viously conclude that for any sign of the capital intensity difference b the
associated characteristic roots are also necessarily real.

7.4 Proof of Proposition 3

Under Assumptions 1-4, let b ≥ 0 and ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0. Using the
fact that ǫcc

ǫdc
= ǫcd

ǫdd
, we derive the following expression

P1(λ) =
(

λ− ǫcc
ǫdc

)(

λ− ǫdc
βǫcc

)

(33)

The associated characteristic roots λ1 and λ2 are therefore both positive.
Moreover we get:

P1(0) = 1
β ≥ 1

P1(1) = −ǫccǫdc

(

1
ǫcc

− 1
ǫdc

)(

1
βǫcc

− 1
ǫdc

)

The normality Assumption 3 implies P1(1) < 0 and we conclude that the
associated characteristic roots λ1 and λ2 are such that λ1 < 1 and λ2 > 1.

From P2(λ), the associated characteristic roots λ1 and λ2 are both pos-
itive. Moreover we derive:
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P2(0) =
1
β ≥ 1, P2(1) = − (β−b)(1−b)

βb

From constant returns to scale, we get wa01 + ra11 = p with a01 = l1/y and
a11 = k1/y. The second equation in (11) rewrites as p = βr. We then obtain
after substitution in the previous equation r(β − a11) = wa01 > 0 and thus

β − b = a00(β−a11)+a10a01
a00

> 0

When b ≥ 0 we then necessarily have b < β ≤ 1. It follows that P2(0) < 0
and we conclude that the associated characteristic roots λ1 and λ2 are such
that λ1 < 1 and λ2 > 1. The steady state is therefore a saddle-point.

7.5 Proof of Proposition 4

i) Under Assumptions 1-4, let b ≥ 0 and ǫcd, ǫdc < 0, i.e. ucd > 0. As
shown previously, we derive from P2(λ) = 0 that there exist two positive
characteristic roots, one being lower than 1 and the other larger. From
P1(λ) as given by (33), the associated characteristic roots λ1 and λ2 are
both negative. Moreover, we get:

P1(−1) =
(

1 + ǫcc
ǫdc

)(

1 + ǫdc
βǫcc

)

= (ǫcc+ǫdc)(βǫcc+ǫdc)
βǫccǫdc

We conclude easily that

P1(−1) < 0 ⇔ ǫcc ∈ (0,−ǫdc) ∪ (−ǫdc/β,+∞)

P1(−1) > 0 ⇔ ǫcc ∈ (−ǫdc,−ǫdc/β)

It follows that the steady state is a saddle-point with damped oscillations
when ǫcc ∈ (0,−ǫdc)∪ (−ǫdc/β,+∞) and there exists a flip bifurcation with
persistent period-2 cycles when ǫcc crosses the bifurcation values −ǫdc or
−ǫdc/β.

ii) Under Assumptions 1-4, let ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0, and b < 0.
As shown previously, we derive from P1(λ) = 0 that there exist two posi-
tive characteristic roots, one being lower than 1 and the other larger. From
P2(λ), the associated characteristic roots λ1 and λ2 are both negative. More-
over we get: P2(−1) = (1+b)(b+β)

βb

We conclude easily that

P1(−1) < 0 ⇔ b ∈ (−∞,−1) ∪ (−β, 0)

P1(−1) > 0 ⇔ b ∈ (−1,−β)

It follows that the steady state is a saddle-point with damped oscillations
when b ∈ (−∞,−1)∪(−β, 0). Moreover, if there is some β∗ ∈ (0, 1) such that
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b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from
above, (k∗, d∗) undergoes a flip bifurcation leading to persistent period-2
cycles.

iii) The case where the consumption good is capital intensive, i.e. b < 0,
and ǫcd, ǫdc < 0, i.e. ucd > 0, is obviously derived from the two previous
cases.

7.6 Proof of Corollary 1

Under a linear homogeneous utility function, standard Euler equalities based
on the homogeneity of degree 1, namely u = ucc + udBd, 0 = uccc+ ucdBd
and 0 = udcc+ uddBd, lead to

ucd = −ucc

Bd , udc = −uddBd
c and thus udd = ucc

(

c
Bd

)2

Moreover, we get from the first order condition udB = βuc and (16)

c
Bd = βφ

1−φ

Substituting all this into (5)-(6) implies

ǫcd = −ǫcc, ǫdc = −ǫcc
1−φ
φ , ǫdd = ǫcc

1−φ
φ

The characteristic polynomial (15) becomes here

P(λ) =
(

λ+ φ
1−φ

)(

λ+ 1−φ
βφ

)

(λb−1)(λβ−b)
βb (34)

The result follows from Proposition 4.

7.7 Proof of Corollary 2

We consider here Cobb-Douglas technologies as given by (17). We follow
the same methodology as in Baierl et al. [2]. The Lagrangian associated
with the optimization program (1) is:

L = kα0
0 l1−α0

0 +w
(

1− l0 − l1
)

+ r
(

k − k0 − k1
)

+ p
[

kα1
1 l1−α1

1 − y
]

(35)

The first order conditions are:

r = α0k
α0−1
0 l1−α0

0 = pα1k
α1−1
1 l1−α1

1 (36)

w = (1− α0)k
α0
0 l−α0

0 = p(1− α1)k
α1
1 l−α1

1 (37)

Using k0 = k − k1, l0 = 1− l1, and merging the above equations gives:
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l∗0 =
(1− α0)α1(k − k∗1)

(α0 − α1)k
∗
1 + (1− α0)α1k

(38)

l∗1 =
α0(1− α1)k

∗
1

(α0 − α1)k∗1 + (1− α0)α1k
(39)

K∗
c = k − k∗1 (40)

k∗1 = g(k, y) ≡ g (41)

where

g(k, y) =
{

k1 ∈ [0, kα1 ] / y = [α0(1−α1)]1−α1k1
[(1−α0)α1k+(α0−α1)k1]1−α1

}

(42)

From (36), (38) and (40) we obtain:

Tk = r∗ = α0

[

(1−α0)α1

(1−α0)α1k+(α0−α1)g

]1−α0
(43)

and from (36), (39), (41) and (43):

Ty = p∗ = α0[(1−α0)α1]1−α0 [α0(1−α1)]−(1−α1)[(1−α0)α1k+(α0−α1)g]α0−α1

α1
(44)

By the derivation of g, we have, for any equilibrium path, the identity (1−
α0)α1k + (α0 − α1)g = α0(1− α1)(g/y)

1/(1−α1 ). Substituting this into (43)
and (44) gives after simplifications:

Tk(k, y) = α0

(

(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

)

1−α0
1−α1

Ty(k, y) = −α1
β1

(

(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

)

α1−α0
1−α1

Tkk(k, y) = −Tk(k, y)
g1
g

with g1 = ∂g(k, y)/∂k. A steady state k∗ is then defined as Tk(k
∗, k∗) +

βTy(k
∗, k∗). Denote g∗ = g(k∗, k∗) and y∗ = k∗. Using the derivatives of T

in the definition of k∗ gives:

g∗ = βα1k
∗ (45)

Substituting (45) into the definition of g, we find

k∗ = α0(1−α1)(βα1)
1

1−α1

α1[1−α0+β(α0−α1)]
(46)

Considering (42), we easily derive

g1 =
βα1(1−α0)(1−α1)
1−α0+β(α0−α1)

(47)

From all these results and (4), we get
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c∗ = T (k∗, k∗) =
(

α0(1−α1)
(1−α0)α1

)α0 (1−α0)(1−βα1)(βα1)
α0

1−α1

1−α0+β(α0−α1)

r∗ = Tk(k
∗, k∗) = α0

(

(1−α0)α1

α0(1−α1)

)1−α0

(βα1)
− 1−α0

1−α1

Tkk(k
∗, k∗) = −Tk(k

∗,k∗)
k∗

(1−α0)2

1−α0+βα1(α0−α1)

b = β(α1−α0)
1−α0

We then easily derive

εck = α0
1−βα1

and εrk = (1−α0)2

1−α0+βα1(α0−α1)

Consider now the characteristic polynomial (48). The characteristic
roots are

λ1 = − φ
1−φ , λ2 = −1−φ

βφ , λ3 =
1
b and λ4 =

b
β (48)

The critical values φ and φ̄ are given in Corollary 1. Assume that α0 >
(1 +α1)/2. We immediately derive from the expression of b that λ3 > −1 if
and only if β > (1 − α0)/(α0 − α1) ≡ β while λ4 < −1. The result follows
from the fact that if β = β and φ = φ̄ or φ then two characteristic roots are
simultaneously equal to −1.

7.8 Proof of Proposition 5

The characteristic polynomial (15) can be expressed as follows
[

λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(λb−1)(λβ−b)
βb = −λ(λ− 1)

(

λ− 1
β

)

β
bǫcc

εck
εrk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

or equivalently, using the notations of Lemma 1,

P1(λ)P2(λ) = P3(λ)

with P3(λ) a degree-3 polynomial while P1(λ)P2(λ) is a degree-4 polynomial.
If these two polynomials intersect four times, then the four characteristic
roots are real. To determine the number of intersections of these polyno-
mials, we can use informations derived from the location of their respective
roots. The roots of P3(λ) = 0 are quite obvious, namely λ31 = 0, λ32 = 1
and λ33 = 1/β. Moreover, depending of the sign of ǫcd, ǫdc we get

- if ǫcd, ǫdc < 0, then ǫcc
ǫdc

− ǫcd
ǫdd

> 0 and limλ→+∞ P3(λ) = −∞ while
limλ→−∞ P3(λ) = +∞;

- if ǫcd, ǫdc > 0, then ǫcc
ǫdc

− ǫcd
ǫdd

< 0 and limλ→+∞ P3(λ) = +∞ while
limλ→−∞ P3(λ) = −∞;

The roots of P1(λ)P2(λ) = 0 are obviously given by the respective roots
of P1(λ) = 0 and P2(λ) = 0.
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i) Assume first that b > 0. We have shown in the proof of Proposition 3
that b < β ≤ 1. The roots of P2(λ) = 0 are then quite obvious, namely λ21 =
1/b > 1 and λ22 = b/β < 1. Finally, the roots of P1(λ) = 0 are necessarily
real and negative if ǫcd, ǫdc < 0, or positive if ǫcd, ǫdc > 0. Moreover, we have
limλ→±∞ P1(λ)P2(λ) = +∞ and P1(0)P2(0) > 0.

If ǫcd, ǫdc < 0, we derive from the above informations that
P1(b/β)P2(b/β) = 0 > P3(b/β) while P1(1)P2(1 < P3(b/β) = 0 implying
a first intersection between P1(λ)P2(λ) and P3(λ) in the positive orthant.
Moreover, since P1(1/β)P2(1/β) < P3(1/β) = 0 while P1(1/b)P2(1/b) =
0 > P3(b/β), we get a second intersection P1(λ)P2(λ) and P3(λ) in the pos-
itive orthant. Since P1(0)P2(0) > 0, P1(λ)P2(λ) = 0 admits two roots in
the negative horthant, P3(0) = 0 and P3(λ) is an increasing function in
the negative hortant, we conclude that there necessarily exists a third in-
tersection between P1(λ)P2(λ) and P3(λ) in the positive orthant. The last
intersection, which also occurs in the negative orthant, is obtained because
limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ). Indeed P3(λ) a degree-3 polyno-
mial while P1(λ)P2(λ) is a degree-4 polynomial. We then get the following
graphical illustration

It follows that the four roots of the characteristic polynomial (15) are
real.

If ǫcd, ǫdc > 0, the roots of P3(λ) = 0 and P2(λ) = 0 are the same
as before while the roots of P1(λ) = 0 are now real and positive. Since
P1(0)P2(0) > 0, P1(1/b)P2(1/b) = 0 and P1(1)P2(1) > 0, there necessarily
exists a second root of P1(λ)P2(λ) = 0 between 0 and 1/b implying two
intersections between P1(λ)P2(λ) and P3(λ). The two others are obtained
since P1(1/β)P2(1/β) > P3(1/β) = 0, P1(b/β)P2(b/β) = 0 < P3(b/β) and
limλ→+∞ P1(λ)P2(λ) > limλ→+∞ P3(λ). We then get the following graphical
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illustration

Here again, it follows that the four roots of the characteristic polynomial
(15) are real.

ii) Assume now that b < 0 and ǫcd, ǫdc > 0. The roots of P2(λ) = 0
become negative, namely λ21 = 1/b < λ22 = b/β < 0. We easily get
P1(0)P2(0) > 0, P1(1)P2(1) < P3(1) = 0,P1(1/β)P2(1/β) < P3(1/β) = 0,
limλ→+∞ P1(λ)P2(λ) = +∞ and limλ→+∞ P3(λ) = −∞. It follows that
there are three intersections between P1(λ)P2(λ) and P3(λ) in the positive
orthant. Moreover, we have limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ) imply-
ing the existence of two additional intersections between P1(λ)P2(λ) and
P3(λ) in the negative orthant. We then get the following graphical illustra-
tion
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and it follows that the four roots of the characteristic polynomial (15) are
real.

7.9 Proof of Proposition 6

Using a homogeneous of degree γ < 1 utility function, the degree-4 charac-
teristic polynomial as given by Proposition 2 becomes

P(λ) =
[

λ2 + λ
(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−ǫcc(1−γ]

)

+ 1
β

]

(λb−1)(λβ−b)
βb

+ λ(λ− 1)
(

λ− 1
β

)

β
b
εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

(49)

and can be expressed as Q1(λ) = Q2(λ) with

Q1(λ) ≡ 1
γ−φ

[

λ2(γ − φ) + λ
(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ[1−ǫcc(1−γ]

)

+ (γ−φ)
β

]

(λb−1)(λβ−b)
βb

Q2(λ) ≡ − 1
γ−φλ(λ− 1)

(

λ− 1
β

)

β
b
εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
[1−ǫcc(1−γ)]

Considering the limit φ → γ we immediately conclude that one root λ1 is
necessarily real and equal to ±∞ and we get

Q1(λ) = λγ (λb−1)(λβ−b)
βb

Q2(λ) = −λγ(λ− 1)
(

λ− 1
β

)

β
b
εck
εrk

(1− γ)

It follows that a second root λ2 is real and equal to 0. Computing now the
derivatives Q′

1(λ) and Q′
2(λ), and evaluating them at 0 gives

Q′
1(0) = γ

β

Q′
2(0) = −γ

b
εck
εrk

(1− γ)

It follows that Q′
1(0) ≷ Q′

2(0) if and only if ǫcc ≶ ǫ̂cc with

ǫ̂cc ≡ − b
(1−γ)

εrk
εck

∈ (0, ǫ̃cc)

Note that ǫ̂cc ∈ (0, ǫ̃cc) if and only if

− εck
bεrk

> 1 (50)

We conclude therefore that under condition (50) there exist two addi-
tional intersections between Q1(λ) and Q2(λ) implying that the two last
characteristic roots λ3, λ4 are also real. Let us then assume that b ∈
(−∞,−1) ∪ (−β, 0). We derive that
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i) if ǫcc < ǫ̂cc then Q′
1(0) > Q′

2(0) with Q1(1/b) = Q1(b/β) = 0 which
implies that one intersection must occur between −1 and 0, say λ3 ∈ (−1, 0).
Moreover we derive also that λ1 = −∞ and λ4 < −1;

ii) if ǫcc ∈ (ǫ̂cc, ǫ̃cc) then Q′
1(0) < Q′

2(0) with Q2(1) = 0 which implies
that one intersection must occur between 0 and 1, say λ3 ∈ (0, 1). Moreover
we derive λ1 = +∞ and λ4 > 1.
We then conclude by continuity that there exists 0 < φ̄ < γ such that when
φ ∈ (φ̄, γ), the above results hold with λ1 ∈ (−∞,−1) and λ2 ∈ (−1, 0)
when ǫcc < ǫ̂cc or λ1 ∈ (1,∞) and λ2 ∈ (0, 1) when ǫcc ∈ (ǫ̂cc, ǫ̃cc).

Note now that the characteristic polynomial (49) can be also expressed
as Q1(λ) = Q2(λ) with

Q1(λ) ≡ 1
φ

[

λ2φ+ λ
(

(γ−φ)2+βφ2−β(γ−φ)ǫcc(1−γ)(2φ−γ)
β(γ−φ)[1−ǫcc(1−γ]

)

+ φ
β

]

(λb−1)(λβ−b)
βb

Q2(λ) ≡ − 1
φλ(λ− 1)

(

λ− 1
β

)

β
b
εck
εrk

φ(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

Considering the limit φ → 0 we immediately conclude that one root λ1 is
necessarily real and equal to −∞ as b < 0, and we get

Q1(λ) = λγ2

β[1−ǫcc(1−γ)]
(λb−1)(λβ−b)

βb

Q2(λ) = 0

It follows that λ2 = 0, λ3 = 1/b and λ4 = b/β with one larger than −1 and
the other lower than −1 as b ∈ (−∞,−1) ∪ (−β, 0). We then conclude by
continuity that there exists 0 < φ ≤ φ̄ such that when φ ∈ (0, φ), the above
results hold with λ1 ∈ (−∞,−1) and λ2 ∈ (−1, 0).

7.10 Proof of Proposition 7

The expressions in (29) become here

B = −β
b
εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)] + β+b2

βb

−
(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−ǫcc(1−γ]

)

C = − (1+β)
b

εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

− β+b2

βb

(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−ǫcc(1−γ]

)

+ 2
β

(51)

As ǫcc < ǫ̃cc and b ∈ (−∞,−1) ∪ (−β, 0), we immediately get C > 0 for any
φ ∈ (0, γ). Moreover, when ǫcc = 0, we get
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B = β+b2

βb − β
b
εck
εrk

γ(1−γ)
γ−φ −

(

(γ−φ)2+βφ2

βφ(γ−φ)

)

< 0

for any φ ∈ (0, γ) if and only if

− εck
bεrk

< γ−φ
βγ(1−γ)

[

(γ−φ)2+βφ2

βφ(γ−φ) − β+b2

βb

]

(52)

As the right-hand-side of (52) is a decreasing function of φ, we conclude that
it is always satisfied if

− εck
bεrk

< 1
β(1−γ) ≡ ε1 (53)

with ε1 > 1. Therefore, under condition (53) there exists ǭ1cc ∈ (0, ǫ̃cc) such
that B < 0 for any φ ∈ (0, γ) if ǫcc ∈ (0, ǭ1cc).

Let us consider now the expression P = 8C − 3B2. We derive from (51)
that P is a hump-shaped function of φ over (0, γ). When ǫcc = 0, we get

C = −1+β
b

εck
εrk

γ(1−γ)
γ−φ − β+b2

βb

(

(γ−φ)2+βφ2

βφ(γ−φ)

)

+ 2
β

≡ −1+β
b x− β+b2

βb z + 2
β

B = β+b2

βb − z − β
b x

(54)

and
P < −8(1+β

b x−
(

β+b2

βb + z
)2

− 2

[

(

β+b2

βb

)2
− 8

β + z2
]

Straightforward computations yield z ≥ 2/
√
β and thus

(

β+b2

βb

)2
− 8

β + z2 >
(

β+b2

βb

)2
− 4

β =
(

β+b2

βb − 2√
β

)(

β+b2

βb + 2√
β

)

= (b−
√
β)2

βb
(b+

√
β)2

βb > 0

for any φ ∈ (0, γ). Therefore, P < 0 for any φ ∈ (0, γ) when ǫcc = 0 if and
only if

− εck
bεrk

< γ−φ
8(1+β)γ(1−γ)

{

(

β+b2

βb + z
)2

+ 2

[

(

β+b2

βb

)2
− 8

β + z2
]}

(55)

We can show that the right-hand-side of (55) is a U-shaped function of φ over
(0, γ) and there exists a unique minimum value ε2 > 1 such that condition
(55) holds if

− εck
bεrk

< ε2 (56)

It follows that under condition (56) there exists ǭ2cc ∈ (1, ǭ1cc) such that P < 0
for any φ ∈ (0, γ) if ǫcc ∈ (0, ǭ2cc).

Let us consider finally R and D as given by (30) and (31). Straightfor-
ward computations yield:

lim
φ→0

B = −∞ and lim
φ→0

C = −∞ so that lim
φ→0

R = −∞ and lim
φ→0

D = −∞
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and there exists γ1 ∈ (0, 1) such that when γ ∈ (γ1, 1)

lim
φ→γ

B = −∞ and lim
φ→γ

C = −∞ so that lim
φ→γ

R = −∞ and lim
φ→γ

D = −∞

We need now to show that there exists a subset of values of φ for which R
and D can be positive. Let us consider the particular values ǫcc = 0, and
b = −β. It follows from (54) that

B2 + 8
β − 4C =

(

z(φ)− x− 1+β
β

)2
− 8(1+β)x

β ≡ F (φ)

with

z(φ) = (γ−φ)2+βφ2

βφ(γ−φ) and x = εck
εrk

γ(1−γ)
γ−φ

Obviously, F (φ) = 0 can be solved through the degree two polynomial

z(φ) − x− 1+β
β = 2

√

2(1+β)x
β

It follows therefore that there exists γ2 ∈ (0, 1) such that when γ ∈ (γ2, 1)
the two roots for which F (φ) = 0 satisfy φ1, φ2 ∈ (0, 1). In the particular
case γ = 1, these roots are indeed such that

φ1 =
1
2 and φ2 =

1
1+β

Moreover, there exists γ3 ∈ (0, 1) such that when γ ∈ (γ3, 1) there is a value
φ3 ∈ (φ1, φ2) such that F ′(z) = 0 when φ = φ1, φ2, φ3. Notice indeed that
in the particular case γ = 1, we have

φ3 =
1

1+
√
β

Obviously, F (φ) > 0 when φ = φ3. Note also that limφ→0 F (φ) =
limφ→1 F (φ) = +∞. As a result, we conclude that F (φ) ≥ 0 for any
φ ∈ (0, 1) with the following shape
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Consider now γ < 1, ǫcc > 0 and the expressions of B and C as given by
(51), and let us define

B2 + 8
β − 4C ≡ G(ǫcc, γ, φ) (57)

By continuity, there exists γ4 ∈ (0, 1) close to 1 and φ̃3 close to φ3 such that

for any given γ ∈ (γ4, 1), ∂G(ǫcc, γ, φ̃3)/∂φ = 0. Moreover, since G(ǫcc, γ, φ)

is a decreasing function of ǫcc with limǫcc→ǭ2cc
G(ǫcc, γ, φ̃3) < 0, we conclude

that there exists ǫcc ∈ (0, ǭ2cc) such that for any given γ ∈ (γ4, 1), when

ǫcc = ǫcc and φ = φ̃3 we have G(ǫcc, γ, φ̃3) = ∂G(ǫcc, γ, φ̃3)/∂φ = 0 such that

We conclude therefore that there exist b̄ ∈ (−β, 0), φc ∈ (0, φ1) and
φ̄c ∈ (φ2, γ) such that if γ ∈ (max{γ1, γ2, γ3, γ4}, 1), b ∈ (−β, b̄) and ǫcc ∈
(ǫcc, ǭ

2
cc), then R > 0 when φ ∈ (φc, φ̄c) and R < 0 when φ ∈ (0, φc)∪ (φ̄c, γ).

Let us consider now D. We have proved that for any given γ ∈ (γ4, 1), if
ǫcc ∈ (0, ǭ2cc) then P < 0 for any φ ∈ (0, γ). This implies that −3B2 < −8C
and thus

8
β − 3B2 + 4C < 8

β − 4C = −4

{

− (1+β)
b

εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

− β+b2

βb

(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−ǫcc(1−γ]

)

}

< 0

It follows that if γ ∈ (max{γ1, γ2, γ3, γ4}, 1), b ∈ (−β, b̄) and ǫcc ∈ (ǫcc, ǭ
2
cc),

then D has the same sign as R for any φ ∈ (0, γ), and the characteristic
roots are complex when φ ∈ (φc, φ̄c) and real when φ ∈ (0, φc) ∪ (φ̄c, γ).
Moreover, when φ = φc or φ̄c, R = D = 0.

As explained in Remark 1, the polynomial (28) belongs to the class
of quasi-palindromic equation and the exact solutions can be computed.
Dividing P(λ) by λ2 gives

P(λ) = λ2 +
(

1
λβ

)2
−B

(

λ+ 1
λβ

)

+ C = 0
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and denoting z = λ+ 1/(λβ) yields to the following degree-2 polynomial in
z P(z) = z2 − zB + C − 2

β

The corresponding discriminant is then

∆z = B2 + 8
β − 4C = R

B

and under the previous conditions we have ∆z < 0. The roots are then

z1 =
B+i

√

−R
B

2 and z2 =
B−i

√

−R
B

2

Plugging this into the definition of z gives the following two degree-2 poly-
nomials in λ:

λ2β − λz1β + 1 = 0 and λ2β − λz2β + 1 = 0

Denoting ∆1 = (z1β)
2 − 4β and ∆2 = (z2β)

2 − 4β, straightforward compu-
tations give

√
∆1 =

β











√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
+i

B

√
−R
B

√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

−16
β )

2
−4BR

2











2

√
∆2 =

β











√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
−i

B

√
−R
B

√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

−16
β )

2
−4BR

2











2

and we finally derive the characteristic roots

λ1 =

B+

√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
+i

√

−R
B











1+ B
√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2











4

λ2 =

B+

√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
−i

√

−R
B











1+ B
√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2











4

λ3 =

B−

√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
+i

√

−R
B











1− B
√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2











4

λ4 =

B−

√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2
−i

√

−R
B











1− B
√

√

√

√B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2











4
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with λ3 = 1/(βλ1) and λ4 = 1/(βλ2). The existence of a Hopf bifurcation
amounts to show that the product λ1λ2 can cross the value 1 when the
parameter φ is varied over the interval (φc, φ̄c). Obviously we get

λ1λ2 =







B+

√

B2+R
B

− 16
β

+

√

(B2+R
B

− 16
β )

2
−4BR

2

4







2

B2−R
B
− 16

β
+

√

(

B2+R
B
− 16

β

)2
−4BR

B2+R
B
− 16

β
+

√

(

B2+R
B
− 16

β

)2
−4BR

By definition we know that if φ = φc or φ̄c, we get R = 0 and thus

λ1λ2 =

(

B+
√

B2− 16
β

4

)2

Considering that B < 0, we then derive that λ1λ2 < 1 if and only if

B < −2(1+β)
β

(58)

But since R = 0, B2 = 4C − 8/β and, using (51) and assuming b = −β,
inequality (61) becomes

εck
εrk

(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)] + (γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)

βφ(γ−φ)[1−ǫcc(1−γ] > 1+β
β

(59)

When ǫcc = 0, this inequality becomes

εck
εrk

γ(1−γ)
(γ−φ) + γ−2φ

φ(1−φ)
γ−φ(1+β)

β > 0 (60)

There exists γ5 ∈ (0, 1) such that when γ ∈ (γ5, 1), (60) is obviously
satisfied when φ = φc or φ̄c. Since the left-hand-side of inequality (59)
is an increasing function of ǫcc, we conclude that λ1λ2 < 1 when γ ∈
(max{γ1, γ2, γ3, γ4, γ5}, 1), b ∈ (−β, b̄), ǫcc ∈ (ǫcc, ǭ

2
cc) and φ = φc or φ̄c.

Tedious but straightforward computations also show that λ1λ2 is a
hump-shaped function of φ over (φc, φ̄c). Consider the critical values ǫc
and φ̃3 previously defined such that when ǫcc = ǫcc and φ = φ̃3 we have
G(ǫcc, γ, φ̃3) = ∂G(ǫcc, γ, φ̃3)/∂φ = 0 with G(.) as defined by (57). We know
that φ̃3 is in a neighborhood of φ3 = 1/(1 +

√
β). It follows that when

ǫcc = ǫcc and φ = φ̃3 we get again R = 0 and following the same argument
as above we conclude that λ1λ2 > 1 if and only if

B > −2(1+β)
β (61)

Assuming b = −β and φ = φ3, this inequality is approximated by

εck
εrk

(1−γ)[1+
√
β−ǫccφ(1−γ)]

1−ǫcc(1−γ) +
2−ǫcc(1−γ)(1−

√
β)

1−ǫcc(1−γ) < 1+β√
β

(62)
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When γ = 1, this inequality is obviously satisfied. Therefore, there ex-
ists γ6 < 1 such that λ1λ2 > 1 when γ ∈ (γ6, 1), ǫcc = ǫcc and

φ = φ̃3. We conclude that there exists ǭ3cc ∈ (ǫcc, ǭ
2
cc], φ

H ∈ (φc, φ̃3) and

φ̄H ∈ (φ̃3, φ̄
c) such that when γ ∈ (max{γ1, γ2, γ3, γ4, γ5, γ6}, 1), b ∈ (−β, b̄),

ǫcc ∈ (ǫcc, ǭ
3
cc) then λ1λ2 < 1 when φ ∈ (φc, φH)∪(φ̄H , φ̄c) and λ1λ2 > 1 when

φ ∈ (φH , φ̄H). The result follows denoting γ = max{γ1, γ2, γ3, γ4, γ5, γ6},
ε̄ = min{ε1, ε2} and ǭcc = min{ǭ1cc, ǭ2cc, ǭ3cc}.

7.11 Proof of Proposition 8

As shown in the proof of Proposition 1, there exists a unique steady
state (k∗, d∗) solution of equations R∗ = r∗/p∗ = β−1 and ud(c

∗, Bd∗) =
βuc(c

∗, Bd∗). Moreover, k∗ does not depend on the utility function
u(c,Bd). Since the stationary bequest x∗ is strictly positive if and only
if r∗k∗ = Tk(k

∗, k∗)k∗ > d∗, let us consider a particular value d∗ = d̄ ∈
(0,min{Tk(k

∗, k∗), Tk(k
∗, k∗)k∗}). Then, for any β ∈ (0, 1), the same argu-

ment as in the proof of Proposition 1 holds: there generically exists a unique
value B∗ such that when B = B∗, d∗ = d̄ is a normalized steady state such
that x∗ > 0.
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