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We derive optimal monetary and fiscal policies in heterogeneous-agent economy
with nominal frictions and aggregate shocks. This enables us to investigate the
redistributive role of optimal monetary policy. We determine the optimal dynam-
ics of nominal interest rate, capital and labor taxes, and public debt. The role of
monetary policy is shown to crucially depend on the fiscal tools that are available.
When linear taxes on capital and labor are available, then there is no redistributive
role for monetary policy. When fiscal tools are incomplete, we identify three new
objectives for monetary policy which generate deviations from price stability, and
only due to agents heterogeneity. The first objective is an information channel when
time-varying capital taxes are not available. The second one is a real-wage objective
: Inflation is used to affect the real wage over the business cycle for redistributive
purposes. This real-wage channel generates empirically consistent dynamics of pub-
lic debt. The third objective is a public finance channel, related to the provision of
public debt for liquidity needs. We provide analytical and numerical results thanks
to an extensive use of the Lagrangian approach to derive optimal policies. This
approach is well-suited for monetary policy with heterogeneous agents.
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1 Introduction

Monetary policy generates redistributive effects through various channels that have been
studied in a vast empirical and theoretical literature, reviewed below. However, it is
not clear how these channels should change the conduct of monetary policy. An option
is to consider that monetary policy should take into account these effects to improve
welfare, and thus participate in a function usually devoted to fiscal policy. An opposite
position is to claim that monetary policy should only focus on monetary goals and let
fiscal tools either dampen or strengthen the redistributive effects of monetary policy.
However, in both cases, studying the normative implications of monetary policy requires
to understand the interactions between monetary and fiscal policies.

The goal of this paper is to study optimal monetary policy with heterogeneous agents,
with a relevant set of fiscal instruments. Obviously, in such a setting, redistribution is
key aspect of public policies. Following the Bewley literature, we assume incomplete
insurance markets for idiosyncratic risks to be the main source of agents heterogeneity.
This framework is known to be general enough to generate realistic consumption and
wealth distributions. In this setup, we add nominal frictions, modeled as costly price
adjustments. This environment has been named HANK following the seminal paper
of Kaplan, Moll, and Violante (2018). Thanks to some methodological contribution
explained below, we can derive optimal monetary and fiscal policies, with three fiscal
instruments: a linear tax on capital income, a linear tax on labor income and issuance of
riskless public debt.

First and foremost, we show that an economy, in which all these instruments are
available, constitutes a meaningful benchmark. Indeed, when the government can levy
resources through both capital and labor taxes, the redistributive effects of monetary
policy are shown to be inexistent, after both a technology and a public spending shock.
In this case, monetary policy solely aims at ensuring price stability in each period – as
in any representative agent economy – and to let fiscal policy alone deal with redistri-
bution. In this sense, there is a perfect dichotomy between the objectives of monetary
and fiscal policies. The redistributive role of monetary policy only stems from missing
fiscal instruments or, more precisely, from non-optimally time-varying fiscal instruments.
Considering various assumptions about the availability of fiscal instruments, we identify
three channels through which optimal monetary policy should deviate from price stability
for redistributive purposes. Comparing model outcomes to the data could enable us to
identify the most relevant framework to think about optimal public policies along the
business cycle.

In a first economy, we characterize the optimal redistributive effect of monetary policy
when capital taxes are optimal at the steady state, but not time-varying. We find that
inflation is volatile only at the impact of an aggregate shock in order to affect the real
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interest rate. This interest rate channel is only active for one period, because the nominal
interest rate is set in advance. Changes in inflation at the date of an aggregate shock is
a way to achieve redistribution through the real interest rate, when capital taxes cannot
be adjusted. For this reason, we label this effect the information channel. It is worth
mentioning that the availability of labor-income taxes allows the government to separate
the redistributive effect of real wages, coming from post-tax wages, and the dynamics of
inflation, stemming from before-tax wages through the Phillips curve. As a consequence,
the government has no incentive to change inflation expectations for redistribution pur-
poses through real wages and inflation expectations remain approximately constant and
equal to zero.

This is not the case anymore in the second setup, where we derive optimal monetary
policy when labor tax is constant and when the government uses the capital-income
tax to balance its budget. As labor taxes do not adjust, monetary policy now induces
redistribution through real wages by influencing inflation expectations. Inflation now
deviates from price stability.

In our third setup, we derive optimal monetary policy when labor and capital income
taxes are constant. Importantly, public debt is a well-defined concept in our economy be-
cause markets are incomplete and because only distorting taxes are available (see Aiyagari
and McGrattan 1998). Hence, there is a positive amount of public debt which is issued
by government for agents to be able to self-insure themselves. When the government uses
the inflation rate to affect the real interest rate, this also directly affects the governmental
budget. We call this last effect the public finance effect.

These effects are identified at a theoretical level, thanks to two methodological con-
tributions. The first one is the use of a truncated representation of incomplete insurance
market economies that we apply here to a monetary economy. This theory of the trunca-
tion is presented in LeGrand and Ragot (2017). The basic idea of the theory is to design
a partial insurance mechanism guaranteeing that heterogeneity only depends on a finite
but arbitrarily large number, denoted N , of past consecutive realizations of idiosyncratic
risk. As a theoretical outcome, agents having the same idiosyncratic risk history for the
previous N periods choose the same consumption and hold the same wealth. The full-
fledged Bewley economy corresponds to the case where N =∞ – which means no partial
insurance mechanism. The representative agent is also mapped into this setup and corre-
sponds to the case where N = 0 – where there is full insurance among agents. The gain
of the truncated representation is that the equilibrium features a finite – though possibly
arbitrarily large – number of heterogeneous agents. This allows us to use the same tools
as in representative agent models. Second, we show that the Lagrangian approach, used
in Marcet and Marimon (2011), is particularly well-suited for monetary economies. This
allows us to derive first-order conditions in non-linear cases and obtain simple intuition
about optimal monetary and fiscal policies.
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Finally, we simulate optimal public policies after a public spending shock, with differ-
ent assumptions about available fiscal instruments. The only empirically relevant case is
the one where both monetary tool and labor tax are used to smooth shocks, but not the
capital tax. In this case, both public debt and inflation increase after a public spending
shock due to the information and real wage channels. The public finance channel plays
a minor role in the adjustment.

Related literature. This paper is related to the literature on monetary policy with
nominal frictions and heterogeneous agents. This is a vast literature (including the sem-
inal work of Bewley 1980 and 1983). The more recent literature, in which our work
is embedded, focuses on sticky prices as the main friction. For instance, Gornemann,
Kuester, and Nakajima (2017) McKay, Nakamura, and Steinsson (2016), Kaplan, Moll,
and Violante (2018) study the transmission channels of monetary policy in this setup.
McKay and Reis (2016) investigate the interaction between monetary and fiscal policies.
Auclert (2017) also analyzes the transmission channels of monetary policy with heteroge-
neous agents. He identifies three transmission channels, which are close but different from
the ones we identify in our paper. Indeed, as we focus on optimal policies, we investigate
the reasons explaining why monetary policy should handle redistribution.

Regarding normative issues, Bhandari, Evans, Golosov, and Sargent derive optimal
monetary policy when the government has access to non-distorting taxes, labor-income
tax and public debt. However, their results crucially depend on the presence of lump-
sum taxes, which makes public debt irrelevant, and simplifies the computation of optimal
policies in their setup. Our truncated approach allows us to dispense with this assumption
and to consider a framework where public debt is well-defined. Nuño and Moll (2017)
use a continuous-time approach and mean-field games to characterize optimal monetary
policies for economies without aggregate shocks. They do not consider additional fiscal
tools (or public debt neither). As a consequence, their results can be consider as an upper
bound of the redistributive objective of monetary policy.

2 The environment

Time is discrete, indexed by t > 0. The economy is populated by a continuum of agents
of size 1, distributed on a segment J following a non-atomic measure `: J(`) = 1.

2.1 Risk

The only aggregate shock in the model affects technology level in the economy. We denote
this risk by (zt)t≥0 and we assume that is follows an AR(1) process: zt = ρzzt−1 +uzt with
ρz > 0 the persistence parameter and the shock uzt being a white noise with a normal
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distribution N (0, σ2
z). The economy-wide productivity, denoted (Zt)t≥0 is assumed to

relate to zt through the following functional form: Zt = ezt .
In addition of this aggregate shock, agents face an uninsurable idiosyncratic labor

productivity shock et ∈ {0, 1} that can take two different values. We interpret these two
states as employment and unemployment. Employed agents in state et = 1 have a con-
stant labor productivity equal to 1 and they can freely adjust their supply. Unemployed
agents in state et = 0 have a zero labor productivity. Such agents have no choice about
their labor supply and they must supply a fixed quantity of labor δ for home production
to obtain δ units of final goods. The individual productivity process (et)t≥0 follows a
discrete first-order Markov process where the probability to stay employed is denoted αt
and the probability to remain unemployed is ρt. With this notation, the job separation
rate is equal 1 − αt, while the job finding rate is 1 − ρt. The history of idiosyncratic
shocks up to date t is denoted by et = {e0, . . . , et} ∈ E t+1.

2.2 Preferences

In each period, the economy has two goods: a consumption good and labor. House-
holds are expected utility maximizers that rank streams of consumption (ct)t≥0 and
of labor (lt)t≥0 according to a time-separable intertemporal utility function equal to∑∞
t=0 β

tU(ct, lt), where β ∈ (0, 1) is a constant discount factor and U(c, l) is an instanta-
neous utility function. As is standard in this class of models, we focus on the case where
U is a Greenwood-Hercowitz-Huffman (GHH) utility function, exhibiting no wealth effect
for the labor supply. For any consumption c and labor supply l, the instantaneous utility
U(c, l) can be expressed as:

U(c, l) = u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
,

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and
u : R+ → R is twice continuously derivable, increasing, and concave, with u′(0) =∞.

2.3 Production

The consumption good Yt is produced by a unique profit-maximizing representative firm
that combines intermediate goods (yt(j))j from different sectors indexed by j ∈ [0, 1]
using a standard Dixit-Stiglitz aggregator. Denoting by ε the elasticity of substitution
for the goods belonging to the different sectors, we obtain that the production Yt can be
expressed using a CES aggregation of individual productions:

Yt =
[ˆ 1

0
yt(j)

ε−1
ε dj

] ε
ε−1

.
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For any intermediate good j ∈ [0, 1], the production yt(j) is realized by a monopolistic
firm. The profit maximization for the firm producing the final good implies that its
demand for the intermediate good is:

yt(j) =
(
pt(j)
Pt

)−ε
Yt,

where Pt is the price of the consumption good. The zero profit condition of the firm
producing the final good implies that the price Pt can be expressed as:

Pt =
(ˆ 1

0
pt(j)1−εdj

) 1
1−ε

.

Intermediary firms are endowed with a linear production technology and use labor as
a sole production factor, such that every unit of labor is transformed into Zt units of
intermediate good. Denoting the amount of labor used in sector j by l̃t(j), we obtain
that the production of goods j amounts to Ztl̃t(j). At the equilibrium, this production will
exactly cover the demand yt(j) for the good j, that will sold with the real price pt(j)/Pt.
The sole production cost will be labor cost. Denoting as w̃t the real before-tax wage –
that is identical for all firms – the real labor cost for firm j producing yt(j) = Ztl̃t(j)
will be w̃tl̃t(j) or w̃t(1−τY )

Zt
yt(j). As is standard, the tax τY will be a labor subsidy to

compensate for steady-state distortions.
In addition to the labor cost, intermediate firms face a quadratic price adjustment

cost à la Rotemberg (1982) when setting their price in the period. The price adjustment
cost is proportional to the magnitude of the firm’s relative price change, which is in other
words the magnitude of the inflation in firm’s price. More formally, the adjustment cost
can be expressed as κ

2

(
pt(j)
pt−1(j) − 1

)2
Yt, where κ ≥ 0 is a scaling factor. We can thus

deduce the real profit, denoted Ωt(j), at date t of firm j:

Ωt(j) =
(
pt(j)
Pt
− w̃t(1− τY )

Zt

)(
pt(j)
Pt

)−ε
Yt −

κ

2

(
pt(j)
pt−1(j) − 1

)2

Yt − tYt .

where tYt is a lump-sum tax financing the subsidy τY . Computing the firm j’s intertempo-
ral profit requires to define the firm’s pricing kernel. In a heterogeneous agent economy,
there is no obvious choice for the pricing kernel. We discuss the reasons and the several
options below. For the moment, we assume that the firm’s j pricing kernel is indepen-
dent of its type and we denote the pricing kernel at date t by Mt

M0
. With this notation,

the firm j’s program consisting in choosing the price schedule (pt(j))t≥0 maximizing the
intertemporal profit at date 0, can be expressed as follows:

max
(pt(j))t≥0

E0

 ∞∑
t=0

Mt

M0

(pt(j)
Pt
− w̃t(1− τYt )

Zt

)(
pt(j)
Pt

)−ε
Yt −

κ

2

(
pt(j)
pt−1(j) − 1

)2

Yt − tYt

. (1)
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Observing that the program (1) is independent of the firm type j, we deduce that in
the symmetric equilibrium, all firms will charge the same price: pt(j) = Pt for all j ∈
[0, 1]. Denoting the gross inflation rate as Πt = Pt+1

Pt
, we deduce the following first-order

condition for the firm’s program:

Πt(Πt − 1) = ε

κ
(e−ztw̃t(1− τYt )− ε− 1

ε
) + βEtΠt+1(Πt+1 − 1)Yt+1

Yt

Γt+1

Γt
, (2)

which the equation characterizing the Phillips curve in our environment. We set τY = 1
ε

to obtain an efficient steady-state. It gives:

Ωt =
(

1− e−ztw̃t −
κ

2π
2
t

)
Yt.

Choosing the pricing kernel. As explained above, in a heterogeneous agent econ-
omy, there is no straightforward choice for the firm’s pricing kernel. In a representative
agent economy, the unique agent’s is necessarily the firm’s owner and there is no possible
dispute about the firm’s pricing kernel, which has to be the representative agent’s pricing
kernel. The choice that we make is to assume that the firm pricing kernel is defined based
on the average marginal utility among agents. We provide a formulation in equation (17)
below in the truncated economy. Quantitatively, the choice of the pricing kernel seems
to have a small effect.

2.4 Assets

Agents have the possibility to trade two assets. The first one is public debt, denoted by
B. Public debt is issued by the government. The second asset is private debt, which is
issued by households. Both assets are assumed to be perfect substitutes. In particular, we
assume the existence of an enforcement technology that prevents agents from defaulting
on their debt. Both private and public are assumed to be exempt of default risk. We
denote by it−1 the nominal interest rate, common to both assets, prevailing between
period t−1 and period t. Both assets being substitute, there is no actual portfolio choice
and we will denote by at,i the agent’s total asset holdings.

Agents face borrowing constraints, and their total asset holdings must be higher than
−ā ≤ 0. Alternatively, this constraint states that agents cannot borrow more than the
amount a. In the rest of the paper, we will focus on the case where the credit limit is
above the steady-state natural borrowing limit.1

1Aiyagari (1994) discusses the relevant values of ā, called the natural borrowing limit in an economy
without aggregate shocks. Shin (2006) provides a similar discussion in presence of aggregate shocks. A
standard value in the literature is ā = 0, which ensures that consumption remains positive in all states
of the world.
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2.5 Government, fiscal tools and resource constraints

In each period t, the government has to finance an exogenous and possibly stochastic
public good expenditure Gt ≡ Gt(zt). The government has several tools for financing the
expenditure. First, the government can levy two distorting taxes. A first tax τKt is based
on payoffs of all interest-rate bearing assets. The second tax τLt concerns labor income.
Second, in addition to these distorting taxes on households, the government can also tax
the profits of firms. Finally, besides taxation, the government can also issue a one-period
public bond, that is assumed to be riskless.

The real after tax wage wt, as well as the real after-tax interest rate from periods t−1
to t, denoted Rt, can therefore be expressed as follows:

wt = (1− τLt )w̃t, (3)

Rt = (1− τKt )1 + it−1

Πt

. (4)

Regarding firm taxation, we assume that the government fully taxes the profit of all
firms. The main advantage of this solution is that it greatly simplifies the question of the
distribution of firm profits among the population of heterogeneous agents. We can now
express the governmental budget constraints at date t

Gt+
1 + it−1

Πt

Bt−1 +
(
τYt − tYt

)
Ltw̃t =

τLt Ltw̃t + τKt
1 + it−1

Πt

Bt−1 +
(

1− w̃t
Zt

(1− τYt + tYt )− κ

2π
2
t

)
Yt +Bt,

that simply states that government spending, consisting of public good expenditure,
public debt repayment, and labor tax subsidies are equal to governmental resources, made
of household taxes on labor and capital, firm profits taxes and public debt issuance. Using
the fact that Yt = ZtLt, the governmental budget constraint can be simplified into:

Gt +RtBt−1 + wtLt = Bt +
(

1− κ

2π
2
t

)
ZtLt. (5)

3 The truncated economy

3.1 Presentation

We now propose a description of our truncated economy that follows the main lines of
LeGrand and Ragot (2017). In this environment, the choices of each agent, and in par-
ticular their savings, do not depend on the whole history of their idiosyncratic shocks,
but only on a fixed number of consecutive past periods. Consequently, the population
features a finite, though possibly large, heterogeneity. This finite-state property contrasts
with standard equilibrium representation in heterogeneous agent models. Indeed, in gen-
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eral, wealth levels present a growing heterogeneity in these models and the equilibrium
representation implies a time-varying distribution of wealth levels, whose support is infi-
nite. This raises considerable theoretical and computational challenges, that we address
here using a new approach based on a finite-state representation.

The length of the truncation for idiosyncratic histories is denoted by N ≥ 0. For
each agent, its whole history is truncated in a history covering the previous N periods.
This N -period history is represented by a vector ẽN ∈ {0, 1}N . The vector ẽN can also
be decomposed into a set of coordinates (ẽN−1, . . . , ẽ0), with ẽk ∈ {0, 1} for any k. The
element ẽ0 is the current beginning-of-period idiosyncratic state, while for any k ≥ 1, ẽk
is the beginning-of-period idiosyncratic state that occurred k periods ago.

In each period t, every agent is therefore endowed with a given history denoted as
ẽN = (ẽN−N+1, . . . , ẽ

N
0 ). In the next period, the agent experiences a new realization of

the idiosyncratic shock e0 and becomes endowed with a new N -period history eN =
(eN−N+1, . . . , e

N
0 ). By construction, the history eN must be a possible continuation of the

previous period history ẽN , that we denote as eN � ẽN . Formally, with our notation,
this means that for all k = 1, . . . , N − 1, we have eNk = ẽNk−1. In words, this means
that the shock that occurred k − 1 periods ago in the previous period now dates from k

periods from the current date perspective. The probability to switch from history ẽN in
period t to history eN in period t + 1 will be denoted Ht,ẽN ,eN . With our notation, this
probability is equal to the probability to transit from state ẽN0 at date t to state eN0 at
date t+1, provided that history eN is a possible continuation of history ẽN . Formally, the
probability can be expressed as Ht,ẽN ,eN = 1eN�ẽNMẽN

0 ,e
N
0

(st), where 1eN�ẽN = 1 if eN is a
possible continuation of history ẽN and 0 otherwise. From these transition probabilities,
we can deduce the recursion characterizing the size of the agents’ population with history
eN in each period denoted (St,eN )t≥0,eN∈EN :

St+1,eN =
∑

êN∈{0,1}N

St,ẽNHt,ẽN ,eN , (6)

where the initial population distribution (S−1,eN )eN∈EN , with∑eN∈EN S−1,eN = 1, is given.
The law of motion (6) of (St,eN )t≥0,eN∈EN is thus valid from period 0 onwards.

The trick to reduce heterogeneity is to assume that each agent receives a lump-sum
transfer, which depends on her N + 1-history. This set of specific lump-sum transfers,
denoted

(
Γ∗t,N+1(eN+1)

)
eN+1∈{0,1}N+1

at date t, is fully balanced in each period, such that
we have ∑eN+1∈{0,1}N+1 Γ∗t,N+1(eN+1) = 0. A consequence of this well-chosen transfer is
that all agents with history eN hold, in the beginning of period t, the same wealth ãt,eN ,
which is equal to:

ãt,eN =
∑

êN∈{0,1}N

St−1,êN

St,eN

Ht−1,êN ,eNat−1,êN , (7)
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where at−1,êN is the end-of-period asset holding of agents with history êN at date t − 1.
Since all agents with the sameN -period history have the same beginning-of-period wealth,
they will also choose the same consumption, the same savings and the same labor supply.

What is the expression of lump-sum transfers
(
Γ∗t,N+1(eN+1)

)
eN+1∈{0,1}N+1

? Consider
an agent with the N + 1-history eN+1. This history can first be written as (ẽN , e), where
e is the date-t idiosyncratic state following the N -period history ẽN starting from date
t− 1. The history can also be written as (ẽ, eN), where the N -period history eN starting
at date t is preceded by state ẽ, N + 1 periods ago. The transfer Γ∗t,N+1(eN+1) can then
be defined as:

Γt,N+1(eN+1) = Rt(ãt,eN − at−1,ẽN ), (8)

which swaps, at date t, the beginning-of-period wealth Rtat−1,ẽN with the wealth Rtãt,eN .
Importantly, this lump-sum transfer does not affect agents’ choices. Indeed, since each
agent is atomistic in the continuum with mass SẽN of agents with history ẽN , all agents
take transfers

(
Γ∗t,N+1(eN+1)

)
eN+1∈{0,1}N+1

as given.

3.2 Agents’ program

Agents are expected-utility maximizers taking fiscal policy as given. At each date, every
agent chooses her consumption level c, her labor effort l and her savings a. Because of
our limited-heterogeneity equilibrium, every agent is characterized by two state variables
only: her beginning-of-period wealth a and her N + 1-period history. Agents’ program
can be written recursively as follows:2

VN+1(a, eN+1) = max
a′,c,l

U(c, l) + βE

 ∑
(eN+1)′�eN+1

HeN+1,(eN+1)′VN+1(a′,
(
eN+1

)′
)
 , (9)

a′ + c = wθeN
0
l + δ1eN

0 =0 +Ra+ ΓN+1(eN+1), (10)

c, l ≥ 0, a′ ≥ −ā, (11)

where condition (10) is the budget constraint of an agent with history eN+1, and inequal-
ities in (11) are positivity constraints on consumption and labor choices as well as the
credit constraint.

An interesting feature of the equilibrium is that despite the value function depends on
the N + 1-period history of agents, their choices only depend on their N - period history.
Consequently, for sake of conciseness, every agent-dependent variable x will be denoted
as xt,eN for agent eN at date t. If we denote by νt,eN the Lagrange multiplier of the credit
constraint a′ ≥ −ā for an agent with history eN at date t, the first-order conditions of

2In line with the literature, we denote the savings choice in the current period by a′. The value a is
thus the beginning-of-period wealth.
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the agent’s program (9)–(11) can be expressed as follows:

Uc(ct,eN , lt,eN ) = βEt

 ∑
ẽN�eN

Ht,eN ,ẽNUc(ct+1,ẽN , lt+1,ẽN )Rt+1

+ νt,eN , (12)

lt,eN =
(
wtθeN

0

)ϕ
+ δ1eN

0 =0, (13)

νt,eN (at,eN + ā) = 0 and νt,eN ≥ 0. (14)

Equation (12) is the Euler equation for consumption of an agent with history eN .
Similarly, equation (13) is the Euler equation for labor. The very simple expression is a
direct consequence from the GHH utility function. Finally, equation (14) is the comple-
mentary slackness condition for asset holdings, stating that either the credit constraint
is binding or the Lagrange multiplier is null.

3.3 Market clearing and pricing kernel

Using the limited-heterogeneity notation, we can express equilibrium condition on the
labor and asset market. For the labor market, start noticing that for any history eN , a
population of agents of size St,eN supplies the same labor quantity amounting to lt,eN ,
with the productivity θeN

0
. Consequently, the labor supply in efficient units for history

eN amounts to θeN
0
St,eN lt,eN . The aggregation over all possible histories of {0, 1}N implies

that the total labor supply Lt in efficient units can be expressed as:

Lt =
∑

eN∈EN

θeN
0
St,eN lt,eN . (15)

Regarding the financial market clearing, the total demand of private assets sums up
to the public debt supply Bt. Indeed, private and public claims are perfectly fungible
and private savings are issued in net zero supply. In consequence, the aggregate supply of
private and public savings is equal to the amount of public debt. Consequently, financial
market clearing at date t implies the following equality:

Bt =
∑

eN∈EN

St,eNat,eN . (16)

Finally, we can provide a formal expression for the firms pricing kernel. This pricing
kernel that equals Mt/M0 is assumed to depend on the a sum of the agents’ marginal
utility for consumption. Formally, the expression of Mt is:

Mt = βt
∑

eN∈EN

SeNUc
(
ceN ,t, leN ,t

)
. (17)

3.4 Sequential equilibrium

We can finally formalize the expression of a sequential equilibrium.
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Definition 1 (Sequential equilibrium) A sequential competitive equilibrium is a col-
lection of individual allocations

(
ct,eN , lt,eN , ãt,eN , at,eN

)
t≥0,eN∈EN

, of aggregate quantities

(Lt, Bt)t≥0, of population sizes
(
St,eN

)
t≥0,eN∈EN

, of price processes (wt, Rt, R̃t, w̃t)t≥0, and
of a fiscal policy (τKt+1, τ

L
t , Bt)t≥0, and of gross inflation rate (Πt)t≥0 such that, for an

initial distribution of population and wealth
(
S−1,eN , a−1,eN

)
eN∈EN

, and for initial values
of public debt B−1, of capital tax τ0, and of the initial aggregate shock z−1, we have:

1. given prices and fiscal policies, individual strategies
(
at,eN , ct,eN , lt,eN

)
t≥0,eN∈EN

solve
the agents’ optimization program in equations (9)–(11);

2. number of agents with history eN ,
(
St,eN

)
t≥0,eN∈EN

, and beginning-of-period indi-

vidual wealth,
(
ãt,eN

)
t≥0,eN∈EN

, are consistent with the laws of motion (7) and (6);

3. labor and financial markets clear at all dates: for any t ≥ 0, equations (15)–(16)
hold;

4. the government budget constraint (5) holds at any date;

5. factor prices (wt, Rt, R̃t, w̃t)t≥0 are consistent with (3) and (4);

6. the inflation path (Πt)t≥0 is consistent with the dynamics of the Phillips curve: at
any date t ≥ 0, equation (2) holds.

4 Optimal fiscal policy

4.1 The Ramsey problem

We now solve the Ramsey problem in our incomplete-market economy with aggregate
shocks. The Ramsey problem requires the government to choose a fiscal policy and an
inflation path that maximize aggregate welfare. This fiscal policy consists of a path for
labor and capital taxes, as well as a path of public debt issuances. For a given truncation
length N > 0, this aggregate welfare, computed using a utilitarian criterion, can simply
be expressed as:

∞∑
t=0

βt
∑

eN∈εN

St,eNU(ct,eN , lt,eN ). (18)

In other words, the government has to select the competitive equilibrium associated to
the highest welfare subject to a constraint of balanced governmental budget.
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We can formalize the Ramsey program as follows:

max
(Rt,wt,Bt,Πt,(at,eN ,c

t,eN ,l
t,eN )

eN∈{0,1}N )
t≥0

E0

 ∞∑
t=0

βt
∑

eN∈EN

St,eNU(ct,eN , lt,eN )
 , (19)

Gt +RtBt−1 + wtLt = Bt +
(

1− κ

2π
2
t

)
ZtLt. (20)

for all eN ∈ {0, 1}N :

at,eN + ct,eN ≤ wtθeN
t
lt,eN 1eN

0 6=0 + δ1eN
0 =0 +Rtãt,eN , (21)

Uc
(
ct,eN , lt,eN

)
− νt,eN = βEt

 ∑
ẽN∈EN

Ht+1,eN ,ẽNUc
(
ct+1,ẽN,lt+1,ẽN

)
Rt+1

, (22)

lt,eN ≥
(
wtθeN

t

)ϕ
+ δ1eN

0 =0, (23)

Πt(Πt − 1) = ε

κ
(e−ztw̃t(1− τYt )− ε− 1

ε
) (24)

+ βEtΠt+1(Πt+1 − 1)Yt+1

Yt

Mt+1

Mt

, (25)

νt,eN (at,eN + a) = 0, (26)

Bt =
∑

eN∈EN

St,eNat,eN , Lt =
∑

eN∈EN

St,eN θeN
t
lt,eN , (27)

and additionally subject to the law of motion (6) of (St,eN )t≥0,eN∈EN , the definition (7) of
(ãt,eN )t≥0,eN∈EN , and the positivity of labor and consumption choices. All constraints in
the Ramsey program have already been interpreted. Equations (20) and (21) are govern-
mental and individual budget constraints. Equations (22) and (23) are Euler equations
for consumption and labor, while equation (24) characterizes the Phillips curve. Finally,
(26) is the complementary slackness condition, while (27) collect aggregation equations.
An detailed formulation of the program can be found in Appendix A.

The Ramsey program can be reformulated by integrating in the objective function
the individual Euler equations (22) for consumption as well as the equation for the
Phillips curve. Following the same lines as LeGrand and Ragot (2017), we denote by
βtmt(st)St,eNλt,eN the Lagrange multiplier of the Euler equation of agent eN in state st.
We also define for all eN ∈ EN :

Λt,eN =
∑
êN∈EN St−1,êNλt−1,êN Πt,êN ,eN

St,eN

. (28)

The quantity Λt,eN can be interpreted as the average of previous period Lagrange multi-
pliers for the Euler equation. Similarly, we denote as βtmt(st)αt the Lagrange multiplier
of the equation (24) of the Phillips curve. With this notation, the objective of the Ramsey
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program (19) becomes (see Appendix B for further detail about the analytical derivation):

J =E0

∞∑
t=0

βt
∑

eN∈EN

St,eN

(
U(ct,eN , lt,eN ) (29)

+ Uc(ct,eN , lt,eN )
(
Λt,eNRt − λt,eN

)
,

+ Uc(ct,eN , lt,eN )
(
αt
ε− 1
κ

(
e−ztw̃t − 1

)
− (αt − αt−1) Πt (Πt − 1)

)
eztLt

)
.

With this notation, the Ramsey program (19)–(27) can now be expressed as:

max
(Πt,Rt,wt,Bt,(at,eN ,c

t,eN ,l
t,eN )

eN∈EN )
t≥0

J

subject to constraints (20), (21), (23), and (27), as well as subject to the law of motion
(6) of (St,eN )t≥0,eN∈EN , and the definition (7) of (ãt,eN )t≥0,eN∈EN .

Marcet and Marimon (2011) rely on a similar transformation for individual Euler
equations. We here use the same methodology to cope with the Phillips curve. The
main idea of this representation is that minimizing the cost of the constraints is now an
objective.

Second, it is worth mentioning a new difference between real and monetary frame-
works. As is standard in optimal fiscal policy literature and following Chamley (1986),
the Ramsey problem is written in post-tax prices Rt and wt. To derive fiscal policy, the
literature usually solves for the the post-tax allocation and then derive the value of the
taxes comparing post-tax prices and marginal productivities. This methodology cannot
be applied when the Phillips curve is a binding constraint (i.e., αt 6= 0), because the
before-tax price now enters into the objective of the planner. This difference is the basis
of the real-wage effect described below. As for the real economy, we will solve for the
allocation in the monetary policy and we then derive the value of the instruments.

Finally, in all expressions below, it is useful to introduce a new intuitive concept, that
we call the social valuation of liquidity for agents eN and that we denote by ψt,eN . It is
formally defined as:

ψt,eN ≡ Uc(ct,eN , lt,eN )− Ucc(ct,eN , lt,eN )
(
λt,eN − (1 + rt)Λt,eN

)
. (30)

The valuation ψt,eN differs from the marginal utility of consumption Uc(ct,eN , lt,eN ) (which
can be seen as the private valuation of liquidity for agents eN) since ψt,eN takes into
consideration the saving incentives from periods t − 1 to t and from periods t to t + 1.
An extra consumption unit makes the agent more willing to smooth out her consumption
between periods t and t + 1 and thus makes her Euler equation more “binding”. This
more “binding”constraint reduces the utility by the algebraic quantity Ucc(ct,eN , lt,eN )λt,eN ,
where λt,eN is the Lagrange multiplier of the agent’s Euler equation at date t. The extra
consumption unit at t also makes the agent less willing to smooth her consumption

14



between periods t − 1 and t and therefore “relaxes” the constraint of date t − 1. This
is reflected in the quantity Λt,eN . Finally, the last key Lagrange multiplier is denoted µt
and is applied to the budget constraint of the government. Hence, for the government,
the marginal cost at period t of transferring resources to households is µt.

4.2 Understanding the role of monetary policy: A decomposi-
tion

The understanding of the rationale for deviation from price stability, we study five dif-
ferent economies:

1. the real economy with both time-varying capital and labor taxes, without monetary
frictions;

2. the monetary economy, with nominal frictions and time-varying capital and labor
taxes;

3. the economy without time-varying capital taxes and with only time-varying labor
taxes, allowing to identify the information channel;

4. the economy without time-varying labor taxes and with only time-varying capital
taxes, allowing to identify the real wage channel;

5. the economy without time-varying capital and optimal labor taxes.

The roadmap, is the following. The first two economies will prove that the real economy
(economy 1) generates the constrained efficient allocation. This allocation can be reached
with the full set of instruments (economy 2). The following two economies (economy 3
and 4) allow identifying the real interest and the real wage channels, respectively. Both
effects are combined in economy 5.

In all these economies, we allow for time-varying public debt, as it is an obvious time-
varying tool in the business cycle.3 We study the effect of an ad-hoc debt dynamics in
economy 5, to discuss the public finance channel.

4.2.1 The benchmark: The real economy case

To understand the impact of nominal frictions on our results, we compare a monetary
economy with frictions to a frictionless economy. We define the real-economy allocation
as a flexible-price economy, where the government can choose in each period capital and
labor taxes, and public debt, so as to optimize the aggregate welfare. More formally, the

3Results with constant public debt would be very easy to derive, with no further economic insights.
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real economy allocation is the solution of the following program:

max
(Rt,wt,Bt,(at,eN ,c

t,eN ,l
t,eN )

eN∈EN )
t≥0

J,

with κ = 0 and αt = 0 for all t (real economy) and subject to equations (5), (7), (10),
(13), (16), and (17). We recall that expression of the objective J can be found in equation
(29). We formally derive the first-order conditions in Section C of the Appendix. We will
use these conditions to explain the new role for monetary policy.

4.2.2 An irrelevance result with incomplete markets: The monetary econ-
omy with a full set of fiscal tools

We first solve for the optimal monetary and fiscal policies when the government has access
to a full set of fiscal tools. This program can be written as:

max
(Πt,Rt,wt,Bt,(at,eN ,c

t,eN ,l
t,eN )

eN∈EN )
t≥0

J,

subject to equations (5), (7), (10), (13), (16), and (17). Observing the constraints, there
is an obvious choice of inflation. Because of the presence of both capital and labor taxes,
the inflation is redundant and only destroys resources because of the price-adjustment
cost. Consequently, the government sets Πt = 1. The Phillips curve then implies w̃t = ezt

and αt = 0. The before-tax wage is therefore equal to the marginal product of labor and
the Phillips curve is not a binding constraint. The Ramsey program is therefore exactly
the same as the one in the real economy. The optimal allocations of both economies are
therefore identical. Any redistributive effect that inflation could generate is achieved more
efficiently by fiscal policy. We summarize this first result in the following proposition.

Proposition 1 (An irrevelance result) When both labor and capital taxes are avail-
able, the government reproduces the real-economy allocation.

This allocation can be reproduced with several combinations of instruments. Nominal
interest rate and capital taxes are not uniquely pinned down in this allocation. Indeed,
the allocation pins down the post tax real interest rate, which is when Πt = 1:

Rt = (1− τKt ) (1 + it−1) .

As a consequence, any pair of τKt and it−1 satisfying the previous equality generates the
optimal allocation. A simple policy is to set:

it−1 = EtRt+1 + φΠ (Πt − 1) ,

with φΠ > 1 to insure price determinacy. In this case, EtτKt+1 = 0 and the capital tax in
the period only adjusts to the new information set.
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4.2.3 The economy without time-varying capital taxes

We now consider the economy where the planner has only access to time-varying labor
taxes. The capital tax is constant and fixed at its optimal steady-state τKSS to avoid
steady-state distortions. The problem of the planner can now be written as:

max
(Πt,Rt,wt,Bt,(at,eN ,c

t,eN ,l
t,eN )

eN∈EN )
t≥0

J,

subject to equations (5), (7), (10), (13), (16), and (17), as well as with the new additional
constraint Rt = (1− τKSS)1+ibt−1

Πt
, reflecting the new steady state value of the capital tax.

We derive the first-order conditions in Appendix D. We only here discuss the relevant
ones that matter for understanding the optimal allocation. First, the optimal choice of
the nominal interest rate implies the following equation:

Et

 ∑
eN∈EN

St+1,eN

[(
ψt+1,eN ãt+1,eN + Uc(ct+1,eN , lt+1,eN )Λt+1,eN

)]
︸ ︷︷ ︸

expected redistributed gains

= BtEtµt+1.︸ ︷︷ ︸
expected public fin. cost

(31)

The planner equalizes the expected redistributive gains of a change in the real interest
rate to the expected public financial cost. The reason is that the expected inflation will
be roughly 0, as shown in the next paragraph. The redistributive gain of a change in the
real interest rate is the sum of two terms. The first one channels through the tax base
made of asset holdings ãt+1,eN and is priced by the liquidity value ψt+1,eN . The second
term involves Λt+1,eN and captures the benefits in the saving incentives for a marginal
increase in the real interest rate. This gain is equalized to the expected cost for public
finance of an increase in the real interest rate. This cost is related to higher interest
payment on the public debt and is scaled by the amount of outstanding debt Bt. This
cost is priced by the expected governmental liquidity Etµt+1.

Second, the inflation dynamics satisfy the following equation:

0 = Et [κµt+1Πt+1(Πt+1 − 1)Lt+1e
zt+1 ]. (32)

This constraint is provided in the general non-linear case. It implies that inflation expec-
tation is roughly 0. Indeed, at the first order the previous equality implies Etπt+1 = 0.
This is not exactly true in the non-linear case as the government values differently increase
and decrease in inflation.

This last property helps understand monetary policy. The planner commits to a
monetary policy such that the inflation is (approximately) null in expectations, which
minimizes price adjustment costs. The nominal interest rate is then set to balance the
gains and costs of the variations in the real interest rate. However, this does not imply
that inflation is constant in every period. Indeed, the inflation is set in every period
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such that the costs and the gains of inflation changes are balanced. This is given by the
following first-order condition for inflation:

∑
eN∈EN

St,eN

[
ψt,eN ãt,eN + Uc(ct,eN , lt,eN )Λt,eN

]
︸ ︷︷ ︸

distributive gain of inflation

= µt

(
κ

Πt(1− Πt)
Rt

eztLt +Bt−1

)
.︸ ︷︷ ︸

public financial cost

(33)

The left hand side is the welfare gain (possibly negative) of an increase in inflation on
welfare going through a change in the real interest rate. This term is therefore identical
to the left hand side of equation (31). The right hand side the cost for public finances.
It includes the effect on public debt interest rate, scaled by the outstanding public debt
amount Bt−1. The total cost embeds a second term, which reflects the resource de-
struction implied by the price adjustment cost – and the deviation from price stability.
Because of this price adjustment term, inflation is an imperfect substitute to a change in
the capital tax within the period, that does not generate any waste of resources.

How can the planner reach this allocation and manipulate inflation? The answer is
that the Phillips curve generates a relationship between the before-tax real wage and
inflation (when inflation expectations are 0). The government can thus choose the labor
tax to create a wedge between the after-tax real wage, which determines the labor supply
and the before-tax real wage which affects inflation. Actually, it appears that the Phillips
curve is not a constraint in this allocation (αt = 0), but it pins down the labor tax with
the inflation target.

We summarize this finding in the next proposition.

Proposition 2 In the economy with constant capital taxes,

1. net inflation expectations are 0 at the first order;

2. inflation adjusts for only one period after the shock to adjust to the new information;

3. the labor tax adjusts in the period to affect the real wage; the Phillips curve is thus
not a constraint (αt = 0).

As the inflation adjusts only to take into account the information which was not
available when nominal interest rate is set, we call this channel the information channel
for optimal monetary policy. Inflation is an imperfect substitute for time-varying capital
taxes.

4.2.4 The economy without time-varying labor taxes

We now consider an economy where time-varying labor taxes are missing, but where
time-varying capital taxes are available. The government has an additional constraint
which is τLt = τLSS, where τLSS is the optimal labor tax at the steady state. This economy
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exhibits possibly a larger inflation persistence than in the previous case. In this economy,
we indeed have wt =

(
1− τLSS

)
w̃t. As a consequence, the before-tax real wage affects

both inflation dynamics through the Phillips curve, and the income of agents through
its direct effect on the after-tax real wage. Conversely, inflation dynamics will have
redistributive effects because it affects the after-tax real wage through the Phillips curve.
In this economy, the Phillips curve will thus be a constraint and αt 6= 0. Again, we derive
the full set of first-order conditions in Appendix E and focus here on the main expression.

First, the government will set the inflation rate for the real wage to satisfy the following
expression:

∑
eN∈EN

St,eN

θeN lt,eN

eztLt
ψt,eN

︸ ︷︷ ︸
distrib. effect real wage

+
∑

eN∈EN

St,eNUc(ct,eN , lt,eN )
[
αtF

1
t,eN + αt−1F

2
t,eN

]
︸ ︷︷ ︸

effect on the Phillips curve

= µt

[
1 + ϕ

ϕ
(1− τL) w̃t

ezt
+ κ

2 (Πt − 1)2 − 1
]

ϕ

w̃t(1− τL)︸ ︷︷ ︸
effect on the government budget

, (34)

The first term at the left hand side captures the welfare effect of an increase in the real
wage for households. For the planner, it is the valuation of liquidity for agents of each
history multiplied by the tax base θ

eN l
t,eN

eztLt
. The second term at the left hand side is more

involved. It captures the change in the pricing kernel of the firm due to the change in
consumption, which is itself the outcome of the change in the real wage. The expressions
of F 1

t,eN and F 2
t,eN are given in Appendix E. This term can be expected to be close to zero

at the first order for aggregate shocks. The last term captures the effect of an increase
in before-tax real wage on the budget of the government: tax increases, the labor supply
decreases, output decreases, and so does the price adjustment cost. The optimal inflation
rate satisfies the following equality:

∑
eN∈EN

St,eNUc(ct,eN , lt,eN )(1− 2Πt)(αt − αt−1) = µtκ(Πt − 1). (35)

The left hand side is the cost of a change in inflation on the ability of government to
implement the optimal allocation though the Phillips curve. The right-hand side captures
the cost of a change in inflation for the government.

The third equation characterizing the optimal capital tax has now a familiar expres-
sion, which is:

∑
eN∈EN

St,eN

(
ψt,eN ãt,eN + Λt,eNUc(ct,eN , lt,eN )

)
︸ ︷︷ ︸

distrib. effect of real int. rate

= µtBt−1.︸ ︷︷ ︸
effect on gov. bud. cons.

(36)

It equalizes the gain of an increase in the after-tax real interest rate with the public
finance cost. As in the economy with both time-varying taxes, presented in Section 4.2.2,
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the nominal and real interest rates are not determined. Only the product of the two
are determined: Rt = (1 − τKt ) (1 + it−1). The absence of labor taxes does not change
this result. The three equations (34), (35), and (36) determine jointly inflation capital
taxes and public debt, with the government budget constraint. It is difficult to provide
more analytical insights with general utility functions. We rely below on simulations to
investigate the relative importance of these various effects.

4.2.5 The economy without time-varying labor taxes and without time-
varying capital taxes : Fiscal dominance

We finally treat the case where no fiscal tool is available and only monetary policy inter-
venes in the business cycle. Obviously, this case is a mix of the two previous ones and all
the effects are present. To study interesting cases and the effect of public debt dynamics,
we introduce a fiscal rule (which is purposely not optimal), in order to investigate the
effect of public debt. Following Bohn (1998) and many others, we assume that the labor
tax τLt follows a rule depending on the deviation of public debt:

τLt = τLSS + φG(Gt −GSS).

We will play later on the parameter φG. The main choice concerns the inflation dynamics.
It is determined by the following first-order condition:

∑
eN∈EN

St,eN

[
ψt,eN ãt,eN + Uc(ct,eN , lt,eN )Λt,eN

]
︸ ︷︷ ︸

distributive gain of inflation

+
∑

eN∈EN

St,eNPCΠ
t,eN︸ ︷︷ ︸

adj. of Phillips curve

(37)

= µt

(
κ

Πt(1− Πt)
Rt

eztLt +Bt−1

)
.︸ ︷︷ ︸

public financial cost

This equation is very close to (33) derived in the case where only capital taxes were
missing. When labor taxes are missing, the Phillips curve is a constraind and the planner
has to consider the cost of affecting the real wage though the Phillips curve. This is
summarized by the term PCΠ

t,eN , the expression of which is given in Appendix. This last
term is complex, as it embeds the change in the pricing kernel due to the cohange in the
consumption of all agents after a change in inflation.

The condition for the nominal interest rate choice is

0 = Et [κµt+1Πt+1 (Πt+1 − 1) ezt+1Lt+1]

+ Et

(αt+1 − αt) Πt+1 (2Πt+1 − 1) ezt+1Lt+1
∑

eN∈EN

St+1,eNUc(ct+1,eN , lt+1,eN )


︸ ︷︷ ︸
Phillips curve adj.
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This expression is close to the expression (32), it includes an additional term for the
adjustment of the Phillips curve. The first-order condition for the before-tax real wage is
the same as (34). Again, we rely on simulations in Section 5 to investigate the property
of optimal monetary policy.

5 Quantitative properties of the optimal tax system

We now provide a quantitative investigation of the optimal monetary policy after a public
spending shock. We derive the joint optimal monetary and fiscal policies that maximize
the aggregate welfare.

5.1 Calibration and simulation

Parameter calibration. The period is a quarter and the discount factor is β = 0.99.
The utility function is u

(
c− χ−1 l1+ 1

ϕ

1+ 1
ϕ

)
= log

(
c− l

1+ 1
ϕ

1+ 1
ϕ

)
, with a Frisch elasticity of labor

supply set to ϕ = 1, which is the standard value taken in monetary economics. Public
spending is assumed to follow an AR(1) process Gt = ρgGt−1 + εgt , where (εgt )t≥0 is a
white-noise process with a distribution N (0, σ2

g). With this specification the steady-state
public spending is 0, as is standard in New-Keynesian models. We made this choice for
comparison purposes with the New-Keynesian literature, but the model could perfectly
handle a non-zero average public spending. We set the persistence of the public spending
to ρg = 0.97 and the standard deviation to σg = 7%, following Chari, Christiano, and
Kehoe (1994) and Farhi (2010).

As in Imrohoroğlu (1992) or Krusell and Smith (1998) among others, the idiosyn-
cratic risk in our paper is to assumed to be an unemployment risk. We derive transition
probabilities using a calibration based on the strategy of Shimer (2003). The quarterly
transition matrix is:

M =
 0.21 0.79

0.05 0.95

 .
This matrix implies that the quarterly job finding rate is 80%, while the quarterly job
separation rate is 5%. The home production parameter δ is set such that home production
amounts to 50% of market income in real terms. Regarding the credit constraint, we set
the credit limit to ā = 0.1. Note that this quantity has a smaller impact on economy
outcomes than in an economy with capital.4

Finally, concerning the monetary aspect of the model, we follow the standard calibra-
tion practice for the Phillips curve. We namely choose κ = 100 and ε = 6.

Table 1 summarizes our calibration for standard parameters.
4Indeed, as shown in LeGrand and Ragot (2017), in an economy with capital, the government aims

at holding the whole capital stock to minimize distortions.
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β φ δ/(wl) ρg σg ā κ ε

0.99 1 50% 0.97 0.07 0.01 100 6

Table 1: Parameter values

Choosing N . We consider the case where N = 4. As a consequence, there are 24 = 16
different households in our economy. We checked that credit constraints are binding in
equilibrium and our results do not drastically depend on the choice of N .

Numerical methods. To solve the model, we first compute the steady state. This
is not a difficult task, as the above equations define an almost linear system. Second,
we write a code that writes the set of dynamic equations in Dynare for an arbitrary N .
This allows us to use the Dynare solver to double-check our steady-state computations
and to simulate the model. We check that the standard stability and credit-constraint
conditions are fulfilled and that all variables converge back to their steady state value
after the shocks. Simulating the model takes a couple of seconds once the steady-state is
found.

5.2 Steady-state tax system

We simulate the model to determine the optimal fiscal and monetary policy at the steady
state. We report in Table 2 the results for the complete-market economy (“CM” economy
for which N = 0) and the incomplete-market economy (“IM” economy with N = 4). The
government is assumed to have in hand three fiscal tools: capital and labor taxes, and
public debt, as well as one monetary tool, the gross inflation rate.

First, as the steady-state public spending level is null, G = 0, the fiscal system in the
CM economy is trivial: τK,CM = τL,CM = BCM = 0. Regarding the monetary policy, the
gross inflation rate is ΠCM = 1, implying a zero net inflation rate πCM ≡ ΠCM − 1 = 0.
This choice also avoids any price adjustment cost. Finally, the gross real interest rate is
RCM = 1/β, because in presence of complete markets, there is no self-insurance motives.
Overall, the CM economy features no distortion at the steady state and the CM allocation
is identical to the first-best allocation, which is also the benchmark steady-state allocation
in New-Keynesian economies.

In the IM economy, though close for some aspects, the allocation is different along
other aspects. First, the optimal net inflation rate is also zero to avoid price adjustment
costs. Second, the nominal interest rate and the capital tax are jointly indeterminate.
Indeed, the government determines the optimal after-tax real interest rate, which is by
construction equal to RIM

SS =
(
1− τK,IMSS

) (
1 + iIMSS

)
. Every couple

(
τK,IMSS , iIMSS

)
satisfy-

ing the previous equality for a given optimal RIM are admissible choices. So as to avoid
indetermination, we impose as a normalization a zero capital tax at the steady-state:
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τK,IMSS = 0. This will also simplify comparisons with the CM economy. As a result, we
have 1 + iIMSS = RIM

SS . Furthermore, the real interest rate is lower in the IM economy than
in the CM one. We therefore have βRIM

SS < 1, even if βRIM
SS remains quantitatively close

to 1. This outcome is standard in Bewley-type economies. The less standard outcome
of the IM economy steady-state concerns the labor tax and the public debt. First, the
public debt is not zero and we find that the quarterly public debt-to-GDP ratio amounts
to 42%. As a consequence, the provision of liquidity for self-insurance motives, resulting
from market incompleteness for the unemployment risk, has a strong impact on house-
hold liquidity demand and ultimately on public debt. This amount is found to be close
to the results of LeGrand and Ragot (2017) in an economy with capital. The labor tax
needs to adjust for financing public debt interest debt payments. The labor tax remains
however small and equal to 0.4%. This small amount, compared to LeGrand and Ragot
(2017), stems from the choice of a zero public spending in steady state. Contrary to
New-Keynesian standard calibration, LeGrand and Ragot (2017) follow the calibration
of the public finance literature and consider a public debt-to-GDP ratio (on an annual
basis) amounting to 33%, that matches US data.

Finally, our truncated economy features a partial risk sharing arrangement through
the pooling transfers

(
Γ∗N+1(eN+1)

)
eN+1∈{0,1}N+1

. These pooling transfers being con-
stant and equal to 0 is a Bewley economy, we proxy the magnitude of the risk shar-
ing in the truncated economy by the standard deviation, across agents, of the transfers(
Γ∗N+1(eN+1)

)
eN+1∈{0,1}N+1

, normalized by the total income InceN+1 of agents with his-
tory eN+1 (InceN+1 = wθeN+1

0
leN+1 + δ1eN+1

0 =0 + (1 + r)aeN+1). We denote by sdΓ this
standard deviation. In the IM economy, with our calibration, this value is found to be
equal to sdΓ = 3.8%. The standard deviation of pooling transfers relative to agents’ own
individual income is 3.8%, which is a low value.

τK (%) τL (%) π 1− βR B/Y sdΓ (%)
CM 0.0 0.0 0.0 0 0 −
IM 0.0 0.4 0.0 10−6 42% 3.8

Table 2: Steady-state optimal fiscal system

In the exercises we conduct below, in which we close successively the labor and the
capital tax, we always start from the same steady state in IM economies. Furthermore,
if the capital and/or the labor tax is not available, we impose that the corresponding tax
rates is constant and equal to their steady-state value. Formally, we impose τL,IMt = τL,IMSS

(for all t) if labor tax is closed or τK,IMt = τK,IMSS (for all t) if capital tax is closed.

23



5.3 The role of monetary policy in the business cycle

To understand the role of monetary policy, and consistently with the theoretical analysis,
we first various economies after a public spending shock:

1. The “first-best economy” with complete markets and in which no distorting fiscal
tool are used.

2. The real economy with both time-varying capital and labor taxes, without monetary
frictions. This is the constrained efficient allocation.

3. The economy without time-varying capital tax and with only time-varying labor
tax, allowing to identify the information channel.

4. The economy without time-varying labor tax and with only time-varying capital
tax, allowing to identify the real wage channel.

5. The economy without time-varying capital nor optimal labor taxes.

For the sake of the homogeneity of results, we consistently plot IRFs for key variables
after a public spending shock of 1% of GDP. For IRFs, we always focus on 9 key variables
that are plotted on the same 9 panels, as can be seen in Figures 1–4. The first panel is
the public spending shock, plotting the same 1% shock. The second panel plots aggregate
consumption, Ctot. The third panel plots consumption inequality measures, sd(C), that
is proxied by the standard deviation of consumption levels across agents. The fourth
panel is the post-tax real wage, w. The fifth panel is the labor tax, taul. The sixth panel
is public debt, B. The seventh panel is the post-tax real gross interest rate, R. The eighth
panel is the net nominal interest rate, i. The ninth and last panel is the net inflation
rate, pi. All variables are plotted in percentage deviation from their steady-state value,
except tax rates and inflation rate, which are in level deviations from steady state values.

Comparing the first-best economy and the real economy. We plot the results for
the first-best economy (hereafter FB) in Figure 1 and we compare them to the outcomes
of the constrained-efficient economy. Blue dashed lines are for FB results and black lines
are for constrained-efficient economies. The main lesson of the comparison is that both
economies yield very similar allocations concerning aggregate consumption, and labor
supply. However, in the IM economy, this allocation is obtained with a sharp decrease in
the real interest rate for one period (and thus a sharp increase in the capital tax rate).
This standard outcome comes from the fact that a change in capital tax for one period
is not distorting, which generates a front loading of the negative wealth shock on the
government budget constraint. This fall in capital tax finances a fall in the public debt-
to-GDP ratio of 10% at the quarterly level. The labor tax barely moves in the business
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Figure 1: Comparison between the first-best economy (blue dashed line) and the real
economy (black solid line)

cycle. Finally, inequality increases (panel 3) because of the lower level of public debt that
implies a smaller supply of assets available for self-insurance. This smaller public debt
supply ultimately increases equilibrium consumption dispersion.

Despite the absence of capital, these effects are highly similar to those described in
LeGrand and Ragot (2017).

Comparing the real economy and the economy without capital taxes: the
information channel. We plot the results for the labor-tax-only economy in Figure 2
(blue dashed line), and they are compared to those of the constrained-efficient economy
(black solid line).

The main difference is that, in absence of labor tax, the real interest rate does not
move at the impact (blue dashed line in panel 7). Consequently, the public debt does not
feature any front loading after a public spending shock. Furthermore, the public debt
is now countercyclical, and gradually increases, instead of decreasing at the impact in
the constrained-efficient economy. Labor tax increases to finance the higher public debt
repayments. This higher distorting tax reduces labor supply and aggregate consumption.
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Figure 2: Comparison between the real economy and the economy without capital taxes,
and with labor taxes (blue dashed line)

Inequality now decreases (panel 3) because the labor supply of high-income agents de-
creases relatively more than those of low-income agents. Finally, the government mimics
a fall in the real interest rate on impact by increasing the inflation rate for one period.
This is what we call the information channel. But as this increase in inflation is costly
and destroys resources, the inflation raise remains quantitatively small tiny, and amounts
to 2× 10−3% – note that the scale of panel 9 is in percentage points.

Comparing the real economy and the economy without labor tax: the real
wage channel.

We now plot the results for the capital-tax-only economy in Figure 3 (blue dashed line),
and we compared these results to those of the constrained-efficient economy (black solid
line).

When only time-varying capital tax is available, we also observe a sharp decrease in
the real interest rate and a front-loading by a decrease in public debt. In absence of
time-varying labor tax, the inflation now slightly decreases for redistributive purpose.
We refer to this as the real wage channel.
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Figure 3: Comparison between the real economy and the economy without labor taxes,
but with capital taxes (blue dashed line)

Comparing the “constrained-efficient IM economy” and the “debt-only IM
economy”: public finance channel.

Finally, we now plot the results for the debt-only economy in Figure 4 (blue and red
dashed lines), while we plot in black solid line the results to those of the constrained-
efficient economy.

In the public debt-only economy, fiscal policy is exogenous and non-optimal, while
monetary policy only is optimal. Regarding the labor tax, setting a constant amount
yields an exploding public debt path and for the stability of the public debt path, we
have to impose a fiscal rule for the labor tax, that takes the debt dynamics into account.
More precisely, we choose:

τLt = τLSS + φG(Gt −GSS),

where the parameter φG > 0 drives how sensitive to public debt evolution the fiscal rule
is. Our results are reported for two values of φG, namely 1.7 (dashed red line) and 1.5
(dashed blue line). The higher the taxes the higher public debt and inflation.

This last experiments is a case of fiscal dominance, as inflation is used to balance the
budget of the gouvernment. Importantly, this occurs by two channels. First, inflation is
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Figure 4: Comparison between the labor-tax economy (black solid line) and economies
with exogenous tax policy (dashed lines)

used to change the ex-post real interest rate on public debt, through the Fisher effect.
This occurs only at the moment of the shock, as the future path of inflation is forecasted
and included in prices (as can be seen from Pannel 7). Second and more importantly,
unflation is used to affect the before-tax real wage w̃t through the Phillips curve. This
affect the labor tax income to balance the budget of the government τLt w̃t.

6 Conclusion

We derive optimal monetary policy in an economy with incomplete insurance markets
and nominal frictions. Optimal monetary policy crucially depends on assumptions about
fiscal policy, notably the availability of capital and labor taxes. We identify three reasons
why optimal monetary policy should depart from price stability, that holds in complete
markets. When capital taxes are not time-varying, the inflation is a costly substitute to
the redistribution of wealth across agents, at the impact of the shock. We call this channel
the information channel, because inflation only moves due to new information. Second,
when labor taxes are not time-varying, deviation from price stability is used to affect
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the real wage, and to generate redistribution through the real wage. This second effect
is called the real interest rate channel. Finally, in the two previous cases, the inflation
affects the budget of the government as public debt is positive to provide liquidity. This
last channel is called the public finance channel. The analysis of the outcomes in various
cases lets conclude that the most relevant case is the economy without time-varying
capital taxes, but with time-varying labor taxes. In this case, public debt increases after
a positive shock to public spending. The possibility to derive our analytical results is
based on two contributions. First, we use a truncated approach to limit heterogeneity,
such that we study a finite (and arbitrarily high) number of agents. Second, we show
that the Lagrangian approach is particularly well-suited for monetary economics.
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A Ramsey program

We provide below a detailed expression of the Ramsey program.

max
(Πt,Bb

t ,wt,(at,eN ,c
t,eN ,l

t,eN )
eN∈EN )

E0

 ∞∑
t=0

βt
∑

eN∈εN

[
St,eNU(ct,eN , lt,eN )

] ,
subject to equations:

at,eN + ct,eN = θeN lt,eNwt + δ1e0=0 +Rtãt,eN

at,eN ≥ −ā

ξeNUc(ct,eN , lt,eN ) = βEt

 ∑
êN�eN

Ht,eN ,êNUc(ct+1,êN , lt+1,êN )Rt+1

+ νt,eN ,

wtθeNUc(ct,eN , lt,eN ), = −Ul(ct,eN , lt,eN )

νt,eN (at,eN + ā) = 0 and νt,eN ≥ 0

lt,e0 = δ if e0 = 0

ãt,eN =
∑

êN∈EN

St−1,êN

St,eN

Ht−1,êN ,eNat−1,êN

Πt (Πt − 1) = ε− 1
κ

(
e−ztw̃t − 1

)
+ βEtΠt+1 (Πt+1 − 1) Lt+1

Lt

Mt+1

Mt

ez+1

ezt

Gt +RtBt−1 + wtLt = Bt +
(

1− κ

2 (Πt+1 − 1) 2
)
eztLt

Bt =
∑

eN∈EN

St,eNat,eN

wt = (1− τLt )w̃t

Rt = (1− τKt )1 + it−1

Πt

ct,eN , lt,eN ≥ 0, , at,eN ≥ −ā, for all eN ∈ EN

(S−1,eN )eN∈EN and (a−1,eN )eN∈EN are given

B Transforming the Ramsey program

Denote βtmt(st)St,eNλt,eN the Lagrange multiplier of the Euler equation for island eN at
date t. Denote βtmt(st)αt,eN the Lagrange multiplier of the Phillips curve at date t.

The objective of the Ramsey program can be rewritten as:
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J = E0

∞∑
t=0

βt
∑

eN∈EN

St,eNU(ct,eN , lt,eN )

−E0

∞∑
t=0

βt
∑

eN∈EN

St,eNλt,eN

Uc(ct,eN , lt,eN )− νt,eN − βEt

 ∑
êN∈EN

Ht+1,eN ,êNUc(ct+1,êN , lt+1,êN )Rt+1


−E0

∞∑
t=0

βtαt

(
Πt (Πt − 1) eztLtMt −

ε− 1
κ

(
e−ztw̃t − 1

)
eztLtMt + βEt [Πt+1 (Πt+1 − 1) ezt+1Lt+1Mt+1]

)
.

With λt,eNνt,eN = 0 and the definition of Λt,eN , (28) and of Γt(17), we obtain after some
manipulations the following expression for the objective of the Ramsey program:

J = E0

∞∑
t=0

βt
∑

eN∈EN

St,eNU(ct,eN , lt,eN )

− E0

∞∑
t=0

βt
∑

eN∈EN

St,eNλt,eN

(
Uc(ct,eN , lt,eN )

)

+ E0

∞∑
t=0

βt+1 ∑
eN∈EN

St,eNλt,eNEt

 ∑
êN∈EN

Ht+1,eN ,êNUc(ct+1,êN , lt+1,êN )Rt+1


− E0

∞∑
t=0

βtαt (Πt (Πt − 1) eztLtMt)

+ E0

∞∑
t=0

βt+1αtEt [Πt+1 (Πt+1 − 1) ezt+1Lt+1Mt+1]

+ E0

∞∑
t=0

βt
∑

eN∈EN

αt,eN

ε− 1
κ

(
e−ztw̃t − 1

)
eztLtMt.

Finally:

J = E0

∞∑
t=0

βt
∑

eN∈EN

St,eN

(
ξeNU(ct,eN , lt,eN )

+ξeNUc(ct,eN , lt,eN )
(

Λt,eNRt − λt,eN + αt
ε− 1
κ

(
e−ztw̃t − 1

)
eztLt − (αt − αt−1) Πt (Πt − 1) eztLt

))
.

C First-order conditions for the real economy

Derivative with respect to wt: the labor tax. We define the efficient labor share of
households with history eN as ωLt,eN ≡

S
t,eN l

t,eN θ
eN

t

Lt
, which represents the share of workers

with history eN in the labor-tax base at date t. Note that ∑eN∈EN ωHt,eN = 1. We have:

∑
eN∈EN

St,eN lt,eN θeNψt,eN = µtLt

(
1− ϕe

zt − wt
wt

)
,
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or finally:

ϕ
ezt − wt
wt

= 1−
∑
eN∈EN ωLt,eNψt,eN

µt
(38)

The distortions induced by the labor tax are equalized to the equilibrium gain of
transferring resources from all households to the government.

The left-hand side is a measure of the marginal cost of raising resources with the labor
tax, taking into account distortions, which are an increasing function of labor elasticity ϕ.
The right-hand side is a measure of the marginal gain. If the government and households
value liquidity identically, i.e. if ∑eN∈EN ωLt,eNψt,eN = µt, then the right-hand side is null,
and so is the labor tax τL. There is no use for a distorting tool. Conversely, when the
government has a greater liquidity need than that of households: µ>t

∑
eN∈EN ωLt,eNψt,eN ,

the labor tax becomes positive.
The household valuation of liquidity is an average across households, which can be

written as ∑eN∈EN ωLt,eNψt,eN = ∑
eN∈EN ψt,eN + coveN (ωLt,eN , ψt,eN ). The covariance term

(across histories) highlights an additional net cost of using the labor tax, stemming from
its redistributive effect. If the covariance is negative (as in the case in the quantitative
investigation below), households with a high labor income have a low liquidity need. In
this case, the labor tax tends to be progressive and has a small redistributive cost. As
a result, when the covariance becomes increasingly negative, the labor tax will rise, all
other things being constant. The reverse holds when the covariance is positive.

Derivative with respect to Rt: the capital tax. We have:
∑

eN∈EN

St,eN Λt,eNUc(ct,eN , lt,eN ) +
∑

eN∈EN

St,eNψt,eN ãt,eN = µtB
b
t−1 (39)

The distortions induced by the capital tax are equalized to the equilibrium gain of
transferring resources from all households to the government.

Defining ωKt,eN ≡
S

t,eN ã
t,eN

At−1
one can rewrite the expression as:

∑
eN∈EN St,eN Λt,eNUc(ct,eN , lt,eN )

Bt−1
+

∑
eN∈EN

ωKt,eNψt,eN =µt (40)

The left-hand side is a measure of the marginal cost of raising resources with the
capital tax. It is the sum of the intertemporal distortion and the redistributive effects
generated by this tax. The intertemporal distortion generated by the capital tax is a
decreasing function of the capital stock, as one additional unit of resources is generated by
a smaller marginal increase in the capital tax when the capital tax base, Bt−1, is higher.
The cost of levying resources depends on the term ∑

eN∈EN ωKt ψt,eN = ∑
eN∈EN ψt,eN +

coveN (ωKt,eN , ψt,eN ), where the covariance term again captures the redistributive effect of
the capital tax. The more negative the covariance term, the less costly it becomes to levy
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resources with capital tax. The right hand side is the government valuation of one unit
of liquidity raised using the capital tax.

Derivative with respect to Bt: the public debt. We obtain:

µt = βEtRt+1µt+1 + γt. (41)

This expression equalizes the marginal benefit of issuing one additional unit of debt
at time t to the marginal the cost of this additional unit of debt that is equal to the cost
of satisfying the financial market equilibrium in time t plus its cost in time t + 1 using
the after tax return Rt+1 to value the next period.

Derivative with respect to at,eN : the net saving of consumers . For all eN ∈
EN \ Ct, this yields:

ψt,eN = βEt
∑

eN∈EN

Rt+1Ht,êN ,eNψt+1,eN + γt. (42)

This equation states that this marginal cost of saving in additional unit of asset at
date t is equal to benefit of relaxing the financial asset constraint in date t (to increase
its insurance toward shock) plus the marginal benefit of this unit of asset at date t+ 1.

D First-order conditions for the economy without
capital taxes

Derivative with respect to Πt .

∑
eN∈EN

St,eN

1
Πt

[
ψt,eN ãt,eN + Uc(ct,eN , lt,eN )Λt,eN

]
(43)

= µt

κ (1− Πt)
(1− τK) (1+it−1)

Πt

eztLt + Bt−1

Πt

 .
The left-hand side is a measure of the marginal cost of raising inflation. It is the sum of the
intertemporal distortion and the redistributive effects generated by the variation of the
level of price. The right hand side is the net government’s benefit of raising inflation. It
equal to the marginal benefit for the govenrment of raising inflation, that is proportional
to the real public debt issued in time t − 1 (because it decreases the real cost of this
debt) minus the loss associated with the profit of firms that have to support the cost of
price adjustment that is proportional to the level of output and to the degree of nominal
rigidities (recall that the government taxes the entire profit of firms).
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Derivative with respect to it−1.

Et

 ∑
eN∈EN

St+1,eN

(
ψt+1,eN ãt+1,eN + Uc(ct+1,eN , lt+1,eN )Λt+1,eN

) = BtEt [µt+1] .

This equation states that in date t the cost of raising the nominal interest rate is equal
to the expected cost of generate intertemporal distortion and to the cost of redistributive
effects in time t+1 and that this cost is equal to the benefit of an increase in the nominal
interest rate in date t that is proportional to the stock of debt issued at this date using
the expected valuation of government liquidity in date t+ 1 to value it. It implies that:

Et [µt+1Πt+1(1− Πt+1)Lt+1e
zt+1 ] =0.

At date t, the expected level of inflation at the next period is approximately equal to 1.
The first order conditions with respect to the after-tax wage, the public debt and the

net saving of agents are similar to the ones in the real economy and are then omitted.

E First-order conditions for the economy without la-
bor taxes

Define:

Dt,eN = θeN lt,eN

Ucc(ct,eN , lt,eN )
Uc(ct,eN , lt,eN ) + ϕ

(1− τL)w̃t
,

and:

F 1
t,eN = ε− 1

κ

((
Dt,eN

(
w̃te

−zt − 1
)

+ e−zt

1− τL

)
− κ

ε− 1Dt,eN Πt (Πt − 1)
)
,

F 2
t,eN = Dt,eN Πt (Πt − 1) .

With these notations the first-order conditions are the following.

Derivative with respect to w̃t: the before-tax real wage.

∑
eN∈EN

St,eN

θeN lt,eN

eztLt
ψt,eN +

∑
eN∈EN

St,eNUc(ct,eN , lt,eN )
[
αtF

1
t,eN + αt−1F

2
t,eN

]

= µt

[
1 + ϕ

ϕ
(1− τL) w̃t

ezt
+ κ

2 (Πt − 1)2 − 1
]

ϕ

w̃t(1− τL) .

The equation states that the cost of the redistributive effect generated by increasing
the real wage (the first expression of the first line) plus the cost of satisfying the Phillips
curve (the second expression of the first ligne) is equal to the benefit of changing the real
wage on the budget of the government.
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Derivative with respect to Πt.∑
eN∈EN

St,eNUc(ct,eN , lt,eN )(2Πt − 1)(αt − αt−1) = −µtκ(Πt − 1).

The other first-order conditions are the same as in the previous sections and we then
omitted them here. Here Πt will be different from 1 and the interest rate is indeterminate.

F First-order conditions for the economy without
capital and labor taxes

Define
F 3
t =

(
αt
ε− 1
κ

(e−ztw̃t − 1)− (αt − αt−1) Πt (Πt − 1)
)
eztLt

Then the correction for the Phillips curve in equation (37) is

PCΠ
t,eN = ãt,eNUcc(ct,eN , lt,eN )F 3

t + Uc(ct,eN , lt,eN )Πt

Rt

(αt − αt−1) (2Πt − 1) eztLt
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